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Introduction

Fault-tolerant consensus has been extensively studied in the context of dis-
tributed systems. By regulating the dissemination of information within the
network of distributed components, a fault-tolerant consensus algorithm guar-
antees all components agree on common data values and perform the same
course of actions in response to a service request, in spite of the presence of
faulty components and unreliable communication links. This consensus guar-
antee is crucial to the normal functioning of a distributed system.

Being a realization of distributed system, a blockchain system relies on
a consensus protocol for ensuring all nodes in the network agree on a single
chain of transaction history, given the adverse influence of malfunctioning and
malicious nodes. At the time of writing, there are over a thousand initiatives
in the cryptocurrency plethora, embodying more than ten classes of consensus
protocols. This chapter provides an overview of the basics of classic fault-
tolerant consensus in distributed computing and introduces several popular
blockchain consensus protocols.

We organize the chapter as follows: Section 1.1 introduces the basics of
fault-tolerant consensus in distributed system and two practical consensus pro-
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tocols for distributed computing. Section 1.2 presents the Nakamoto consensus
protocol — the pioneering proof-of-work (PoW) based consensus protocol for
Bitcoin. Section 1.3 presents several emerging non-PoW blockchain consensus
protocols and their application scenarios. Section 1.4 gives a qualitative eval-
uation and comparison over the mentioned blockchain consensus protocols.
Section 1.5 concludes this chapter and summarize the design philosophy for
blockchain consensus protocols.

1.1 Fault-Tolerant Consensus in a Distributed Sys-
tem

In a distributed system, all components strive to achieve a common goal in
spite of being separated geographically. Consensus, in the simplest form, means
these components reach agreement on certain data values. In an actual sys-
tem, the system components and their communication channels are prone to
unpredictable faults and adversarial influence. In this section we discuss the
consensus problem of message-passing systems1 in the presence of two types
of component failures: crash failure and Byzantine failure. We then study
two practical consensus algorithms that tolerate these component failures in
distributed computing. For convenience, the terms processor, node, and com-
ponent are used interchangeably in this section.

1.1.1 The System Model

There are three major factors of consensus in a distributed system: network
synchrony, component faults, and the consensus protocol.

Network Synchrony

Network synchrony is a basic concept in distributed system. It defines the
degree of coordination of all system components. We need to assume a certain
network synchrony condition before any protocol development or performance
analysis. Specifically there are three network synchrony conditions:

• Synchronous: Operations of components are coordinated in rounds. This
is often achieved by a centralized clock synchronization service. In each
round, all components perform the same type of operations. For example,

1There is another type of distributed system called shared-memory system. Please refer
to [AW04] for more details. In this chapter we adhere to message-passing system because of
its resemblance in blockchain.
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in round r all components broadcast messages to others and in round
(r + 1) all components receive and process these messages.

• Asynchronous: Operations of components are not coordinated at all.
This is often the result of no clock synchronization service or the drifting
effect of component clocks. Each component is not binded by any coor-
dination rules and performs its own routine in an opportunistic fashion.
There is no guarantee on message delivery or an upper bound of message
transmission delay between components.

• Partially synchronous: Operations of components are not coordinated,
but there is an upper bound of message transmission delay. In other
words, message delivery is guaranteed, although may not be in a timely
manner. This is the network condition assumed for most practical dis-
tributed systems.

In most application scenarios we assume the system is either synchronous
or partially synchronous. For example, the voting process of a democratic
congress is considered synchronous while the Bitcoin network is considered
partially synchronous2.

Faulty Component

A component is faulty if it suffers a failure that stops it from normal func-
tioning. We consider two types of faulty behaviors that a component may
suffer:

• Crash Failure The component abruptly stops functioning and does not
resume. The other components can detect the crash and adjust their
local decisions in time.

• Byzantine Failure The component acts arbitrarily with no absolute
conditions. It can send contradictory messages to the other components
or simply remain silent. It may look normal from outside and not incur
suspicion from others throughout the history of the network.

Byzantine failure got its name from Lamport, Shostak, and Pease’s work
on the Byzantine generals problem [LSP82], which we will discuss later along
with the Oral Messaging algorithm. A Byzantine failure is often the result of a
malfunctioning system process or the manipulation of malicious actor. When

2Many research papers refer to Bitcoin network as “asynchronous”. Since Bitcoin is
based upon the Internet which guarantees message delivery, we follow the above taxonomy
and consider Bitcoin network partially synchronous.
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there are multiple Byzantine components in the network, they may collude to
deal even more damage to the network. Byzantine failure is considered the
worst case of component failures and crash failure is often seen as a benign
case of Byzantine failure.

Consensus Protocol

A consensus protocol defines a set of rules for message passing and process-
ing for all networked components to reach agreement on a common subject.
A messaging passing rule regulates how a component broadcasts and relays
messages while a processing rule defines how a component changes its internal
state in face of these messages. As a rule of thumb, we say the consensus is
reached when all no-faulty components agree on the same subject.

From security’s perspective, the strength of a consensus protocol is usually
measured by the number faulty components it can tolerate. Specially, if a
consensus protocol can tolerate at least one crash failure, we call it crash-fault
tolerant (CFT). Similarly, if a consensus protocol can tolerate at least one
Byzantine failure, we call it Byzantine-fault tolerant (BFT). Because of the
inclusive relationship between Byzantine failure and crash failure, a BFT con-
sensus is naturally CFT. Moreover, consensus is impossible in an asynchronous
network with even just one crash failure. Interested readers are referred to
[FLP85] for an impossibility proof.

In the remainder of this chapter we focus on the Byzantine fault tolerance
of consensus protocols in synchronous or partially synchronous networks.

1.1.2 Byzantine Fault Tolerant Consensus

Formally, we consider a distributed message-passing system with N compo-
nents C1, C2, ..., CN . Each component Ci has an input xi and an output yi
that is not assigned until the first round of consensus execution. Components
are inter-connected by communication links that deliver output messages across
the network.

Consensus Goal The BFT consensus for the above system must satisfy the
following conditions [CDK05]:

• Termination: Every non-faulty component decides an output.

• Agreement: All non-faulty components decide the same output ŷ.

• Validity: If all components begin with the same input x̂, then ŷ = x̂.
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Figure 1.1: Example for Theorem 1: a three-component message-passing sys-
tem with one component being Byzantine.

• Integrity: If a non-faulty component decides ŷ, then ŷ must have been
proposed by some non-faulty component.

The integrity condition ensures that the consensus result ŷ should not orig-
inate from an adversary. In many older textbooks and research papers it is
often not included for the reason that the origin of ŷ is not important, as long
as ŷ is a legal result of the consensus process (validity) and accepted by all
non-faulty components (agreement). Here we consider integrity as an essential
part of the consensus goal.

For an algorithm to achieve BFT consensus, the super-majority of the
components must be non-faulty. A more precise statement is given in Theorem
1.

Theorem 1. In a message-passing system with n components, if f components
are Byzantine and n ≤ 3f , then it is impossible for the system to reach the
consensus goal.

Theorem 1 can be conveniently proved by contradiction in a scenario com-
ponents are partitioned into three groups, with the last group containing all the
Byzantine components. Interested reader may refer to [PSL80, BT85, AW04]
for different flavors of proofs, all of which are based on the partitioning scheme.

To better illustrate Theorem 1, a three-component system example is shown
in Figure 1.1. In this system component C1, C2 are honest while component C3

is Byzantine. All input/decision values are taken from the bivalent set {v0, v1}.
Assume the initial input values for C1 and C2 are v1 and v2 respectively, and the
consensus algorithm is as simple as choosing the majority value of all values
received. After C1, C2 broadcast their values, C3 sends v1 to C1 and v2 to
C2. As a result, C1 decides v1 while C2 decides v2, violating the agreement
condition of the consensus goal. Therefore in order to tolerate one Byzantine

5



components, the network size should be at least four. In the general case, for
any distributed system with N components and f being Byzantine, N ≥ 3f+1
is required to ensure consensus.

1.1.3 The Oral Messaging Algorithm

First we describe the Byzantine generals problem. N Byzantine generals, each
commanding an equal-size army, have encircled an enemy city. They are ge-
ographically separated and can communicate only through messengers. To
break the stalemate situation, each general votes to attack or retreat by send-
ing a messenger to other generals. Each general makes his/her decision locally
based on the votes received. To complicate the situation, there are traitors
within the generals who will sabotage the consensus by sending contradicting
votes to different generals. The ultimate goal is for all loyal generals to agree
on the same action, as halfhearted attack or retreat will result in debacle.

The Oral Messaging algorithm (OM) was proposed as a solution in the
original Byzantine generals problem paper. It assumes within the N gener-
als there is a “commander” who starts the algorithm and the other N − 1
called “lieutenants” orally pass around messages they received. The network
is synchronous and the protocol proceeds in rounds. Specially, we assume the
commander knows at most f generals will be faulty (including him/herself)
and starts the consensus process by executing the OM(f) algorithm. Note
that DEFAULT is a predetermined value, either “retreat” or “attack”.

Algorithm 1: OM(f), f > 0

1 Commander sends its value to every lieutenant;
2 for i = 1 : N-1 do
3 Lieutenant i stores the value received from Commander as vi;

vi =DEFAULT if no value received;
4 Lieutenant i performs OM(f − 1) as Commander to send the value

vi to the other N − 2 lieutenants;
5 end
6 for i = 1 : N-1 do
7 for j = 1 : N-1 and j 6= i do
8 Lieutenant i stores the value received from lieutenant j as vj ;

vj =DEFAULT if no value received;

9 end
10 Lieutenant i uses majority{v1, v2, ..., vN−1};
11 end

Since the oral messaging algorithm is executed in a recursive fashion in
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Algorithm 2: OM(0) (The base case for OM(f))

1 Commander sends its value to every lieutenant;
2 for i = 1 : N-1 do
3 Lieutenant i stores the value received from Commander as vi;

vi =DEFAULT if no value received;
4 Lieutenant i uses vi;

5 end

which the recursion ends at OM(0), it requires f + 1 rounds of executions.
Essentially, as long as N ≥ 3f + 1, the f + 1 rounds of recursive executions
guarantee that at the end of algorithm every general has exactly the same set
of votes, from which the majority function then produces the same result —
the consensus is achieved. Due to its recursive fashion, OM(f) algorithm has
O(Nf+1) message complexity, which is impractical when N is large.

Optional: The Phase King Algorithm

1.1.4 Practical Consensus Protocols in Distributed Computing

Now we have discussed single-value consensus in a synchronous network. In a
typically distributed computing system, the clients spontaneously issue com-
puting requests while the distributed processors work as a consortium to pro-
vide correct and reliable computing service in response to these requests. The
correctness requirement means not only every single request should be pro-
cessed correctly, but also the sequence of requests from a client (or a group
of clients) should be processed in the correct order, which is called the total
ordering requirement. The combination of the two requirements makes dis-
tributed computing a significantly harder task than the single-value consensus
problem we have seen previously. Moreover, the asynchronous nature of real-
world networks further complicates the problem. In practice, we assume the
real-world distributed computing network is asynchronous but with bounded
communication delay between two non-faulty servers.

Replication In actual distributed computing systems, replication is the de
facto choice for ensuring the availability of the system and the integrity of
the service in face of faulty servers. A replication-based distributed system
maintains a number of redundant servers in case the primary server crashes or
malfunctions. The redundant servers are also called backups or replicas. There
are two major types of replication schemes: primary-backup and state-machine
replication.
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• Primary Backup (PB) PB is also known as passive replication. It was
first proposed in [AD76]. In a PB based system of n replicas, one replica
is designated as the primary and the others are backups. The primary
interacts with clients and processes clients’ computation requests. After
the primary finishes one task, it sends to the backups what it has done.
If the primary crashes, a replica will be selected to assume the role of
the primary. PB only tolerates crash failures; it does not tolerate any
number of Byzantine failures.

• State-Machine Replication (SMR) SMR is also known as active
replication. It was proposed in [Sch90]. In a SMR based system, the
consensus protocol is instantiated at each server which runs a determin-
istic state machine that receives inputs, changes states and produces
outputs in an “organized” manner. This enables the distributed network
to provide fault-tolerant service by replicating the state machine across
server replicas and processing client service request in a coordinated way.
A good SMR protocol should guarantee two basic service requirements:
safety - all processors execute the same sequence of requests, and liveness
- all valid requests are executed.

Next we introduce two well-known SMR based consensus protocols for dis-
tributed computing: Viewstamped Replication and Practical Byzantine
Fault Tolerance.

Viewstamped Replication (VSR)

VSR is an early protocol developed for distributed replication systems. Here we
present an updated version of VSR proposed by Liskov and Cowling in 2012
[LC12]. Interested reader may refer to [OL88] for Oki and Liskov’s original
design. In a VSR system with N replicas, there is one primary and N − 1
backups. Each replica operates a local state machine with state variables listed
in Table 1.1. The “viewstamp” refers to the 〈v, n〉 pair, which essentially
enables the replication network to process clients’ operation requests in the
correct order.

VSR consists of three sub-protocols; each is designed specially for one of
the three status cases. We will leave out the message details and focus on the
high-level work flow of these protocols.

1) Normal operation protocol The normal operation runs from session
to session when all functioning replicas hold the same view and the primary
is in good condition. A session includes the client sending request and the
replicas processing this request. A diagram of the normal operation protocol
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Table 1.1: State variables at replica i in VSR
Variable Description
i self index
rep-list list of all replicas in the network
status operation status: either normal, view-change, or recovering
v current view number
m the most recent request message from a client
n sequence number of m
e = execute(m), the execution result of m
c sequence number of the most recently committed client request
log record of operation requests received so far
client-table record of most recent operation for all clients

Table 1.2: Messages in VSR
Message From To Format
Request client primary 〈request,m〉
Prepare primary all backups 〈prepare,m, v, n, c〉
PrepareOK replica i primary 〈prepareok, v, i〉
Reply primary client 〈reply, v, e〉
Commit primary all backups 〈commit, v, c〉
StartViewChange replica i all replicas 〈startviewchange, v + 1, i〉
DoTheViewChange replica i new primary 〈dotheviewchange, v + 1, i〉
StartView primary all replicas 〈startview, v + 1, log〉
Recovery replica i all replicas 〈recovery, i〉
RecoveryResponse replica i the recoverer 〈recoveryresponse, v, n, c, i〉
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Figure 1.2: The normal operation protocol of VSR for a three-replica system.

for a three-replica system is shown in Figure 1.2. At the beginning of a session,
the client sends to the primary a Request message indicating a new operation
request.

1. Prepare Upon receiving a request message, the primary updates its n,
log, client-table and then passes this request to all backups using Prepare
messages which also include its n and c which was updated in the previous
session. Each backup executes the primary-committed operations if there
is any and updates its state accordingly.

2. PrepareOK Each backup sends a PrepareOK message to the primary
showing its state is up to date. After receiving f PrepareOK messages,
the primary executes the requested operation and then updates c, log,
client-table.

The primary then sends a Reply message to the client. Specifically if the
primary hasn’t received a client request for a long time, it sends a Commit
message to the backups indicating the updated c, as an alternative to the
Prepare message.

2) View change protocol A view change is needed in the event of primary
failure, which can be detected by a backup replica if no Prepare or Commit
message has been received for a long time. After detecting the need for a
view change, a replica updates its status to view-change and advances the
view number to v + 1. It then sends a StartViewChange message including
the new view number v + 1 to other replicas. When a replica receives at
least f StartViewChange messages with the new view number v + 1, it sends
a DoTheViewChange message to the backup that will become the primary.
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When the new primary receives at least f + 1 DoTheViewChange messages,
it updates its state accordingly, sends to other replicas a StartView message
with the updated log and the new view number v + 1, and starts processing
operation requests from clients. In the meantime, backup replicas receive the
StartView message and update their state according to the log in the message,
and finally change status to normal.

3) Recovering protocol When a replica recovers from a crash, it has to
go through the recovering protocol before participating in normal operation
and view change. It first sends a Recovery message to all other replicas. Each
replica responds with a RecoveryResponse message indicating the current v.
The primary needs to respond with additional state information including log,
n, and c. The recovering replica waits until it has received at lease f + 1
RecoveryResponse messages, and then updates its state accordingly.

Fault Tolerance Note VSR can tolerate f crash failures if the total number
of replicas (including the primary) N ≥ 2f + 1. However, it has zero tolerance
of Byzantine failures. For example if the primary is Byzantine faulty due to
the adversarial manipulation, it can simply deny all client operation requests
while pretending to work normally with the backups. If a backup is Byzantine
on the other hand, it may maliciously initiate a view change session to oust
the current primary without suspicion.

Complexity analysis We analyze the message complexity of the normal
operation. The communication overhead is primarily contributed by the two
phases: Ii the Prepare phase the primary broadcasts a Prepare message to all
replicas; in the PrepareOK phase all replicas send a PrepareOK message to
the primary. Therefore the message complexity for VSR’s normal operation is
O(N).

Practical Byzantine Fault Tolerance (PBFT)

In the practical scenario where the distributed computing system may be com-
promised by malicious actors, both the primary and the backups are prone
adversary manipulation, which falls into the realm of Byzantine failures. Pro-
posed by Castro and Liskov in 1999 [CL+99], PBFT advances VSR for toler-
ating Byzantine failures.

PBFT consists of three sub-protocols: normal operation, checkpoint, and
view-change. The messages involved are listed in Table 1.4. As an additional
security measure, each message is signed by the sender and verified by the
receiver. In the following part we assume there are at most f faulty replicas
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Table 1.3: State variables at replica i in PBFT
Variable Description
i self index (0 for primary)
rep-list list of all replicas in the network
σi replica i’s key for signing messages
status operation status: normal or view-change
v current view number
m the most recent request message from a client
n sequence number of m
d = digest(m), the digest of m
e = execute(m), the execution result of m
s The latest checkpoint
h low-water mark, ie. sequence number of s
H high-water mark; h and H form a sliding window
C set of all valid Checkpoint messages proving the correctness of s
Pt set of a valid Pre-prepare message and all matching Prepare

messages for a request with sequence number t
P set of the Pt for every request t that is higher than n
V set of all valid View-Change and View-Change messages
O set of a specially chosen Pre-Prepare messages
log record of operation requests received so far

Table 1.4: Messages in PBFT
Message From To Format (signed)
Request client primary 〈request,m〉σc

Pre-Prepare primary all backups 〈pre-prepare, v, n, d〉σ0

Prepare replica i all replicas 〈prepare, v, n, d, i〉σi

Commit replica i all replicas 〈commit, v, n, d, i〉σi

Reply replica i client 〈reply, e, i〉σi

View-Change replica i all replicas 〈view-change, v + 1, n, C,P, i〉σi

New-View primary all replicas 〈new-view, v + 1,V,O〉σ0

Checkpoint replica i all replicas 〈checkpoint, n, d, i〉σi
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and the network size N = 3f + 1. Later we will show N ≥ 3f + 1 guarantees
the protocol’s Byzantine fault tolerance.

1) Normal operation protocol Similar to VSR, PBFT runs its normal
operation from session to session. A session starts with a client operation
request and goes through three sequential phases of replica interaction, namely
Pre-Prepare, Prepare, and Commit, before replying to the client.

1. Pre-Prepare When the primary receives an operation request message
m, it assigns a sequence number n to the request and sends a Pre-Prepare
message along with the message m to all backups. After receiving a
Pre-Prepare message, a backup checks the associated signatures and the
validity of v, n, d. If everything is valid and n is within the water marked
range 〈h,H〉, the backup accepts this message, updates its state accord-
ingly, and proceeds to the Prepare phase.

2. Prepare Each backup sends a Prepare message to all other replicas. A
replica that has received at least 2f + 1 Prepare messages with the same
v, n, d values updates its state accordingly and proceeds to the Commit
phase.

3. Commit Each replica sends a Commit message to all other replicas.
When a replica receives at least 2f + 1 Commit messages with the same
v, n, d values, it first finishes executing the old requests with sequence
numbers lower than n, then executes the current request m to produce
the result e, and finally updates its state accordingly.

When a replica finishes the Commit phase, it sends the execution result e
in a Reply message to the client. The client accepts an execution result only
after it receives at least 2f + 1 Reply messages containing the same result e.

2) Checkpoint protocol The checkpoint protocol is used by the replicas to
safely discard old items in log and agree on a stable checkpoint which provides
essential service state info for the view-change process. Each replica period-
ically marks a executed client request as a checkpoint in log and records its
sequence number as h, which is called the low water mark. It multicasts the
checkpoint to other replicas in the form of a Checkpoint message. When a
replica collects at least 2f + 1 Checkpoint messages with the same n and d, it
marks this checkpoint stable by assigning n to the variable h, and saves these
Checkpoint messages as the proof form the stable checkpoint. After that the
replica can safely discard from its log all Pre-Prepare, Prepare, and Commit
messages with sequence numbers prior to h. In addition to h, each replica also
updates the high water mark H.
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Figure 1.3: The normal operation protocol of PBFT for a four-replica system.

3) View-change protocol Since a view is binded to a known primary, when
the primary is suspected faulty, the backups carry out the view-change proto-
col to choose a new primary. When a backup received a request but has not
executed it for a certain timeout (for example it stays in Phase2 of normal op-
eration for too long), it stops receiving further messages related to the current
view v and updates status to view-change before sending a View-Change
message for view v+ 1 to all replicas. When the new primary receives at least
2f View-Change messages for view v + 1, it multicasts a New-View message
to all backups, updates its log and 〈h,H〉 pair, and proceeds into normal op-
eration. A replicas validates the received New-View message, updates it state,
and proceeds to normal operation as well.

Fault tolerance In the normal operation, the separation of pre-prepare
phase and prepare phase is essential to the correct ordering of request exe-
cution and faulty primary detection. When a primary sends a Pre-Prepare
messahe with out-of-order request or stays silent for a long time, the backups
will consider the primary faulty and initiate the view change protocol for a
new primary, as long as the majority of backups are non-faulty. Now we dis-
cuss the condition for PBFT to tolerate f Byzantine replicas. In the normal
operation, a replica needs to receive 2f + 1 Prepare messages with the same
state to proceed to the Commit phase; it then needs to receive 2f + 1 Com-
mit messages with the same state to proceed to request execution. This is
equivalent to the scenario we discussed in the Oral Messaging algorithm for
the Byzantine generals problem: in a fully connected network the consensus
can be reached if the super-majority of components are non-faulty. The same
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Table 1.5: A Comparison between VSR and PBFT for partially asynchronous
distributed computing systems

VSR PBFT
Year proposed 1988 1999
CFT condition N ≥ 2f + 1 N ≥ 2f + 1
BFT condition None N ≥ 3f + 1
Message Complexity O(N) O(N2)

consensus routine is applied in the checkpoint protocol and view-change pro-
tocol as well to guarantee the safety of the new primary election. As we have
assumed N = 3f + 1 in the beginning, messages from 2f + 1 non-faulty repli-
cas are enough for a super-majority consensus. In the general case where f is
unknown (but N ≥ 3f + 1 is assumed), the super-majority number should be
updated to b2N3 c+ 1 from 2f + 1 in the protocol.

Complexity analysis We analyze the message complexity of the normal
operation. The communication overhead is primary contributed by the three
phases: in the Pre-Prepare phase the primary broadcasts a message to all back-
ups (O(N)); in the Prepare phase every backup broadcasts a message to all
other replicas (O(N2)); in the Commit phase every replica broadcasts a mes-
sage to all other replicas (O(N2)). Therefore the overall message complexity
of PBFT’s normal operation is O(N2). This is acceptable for a network that
is fully or near-fully connected.

Optional: Paxos [Lam98, L+01]

Comparison between VSR and PBFT

VSR and PBFT are compared in Table 1.5. In a short summary, PBFT
achieves Byzantine fault tolerance with a more complex protocol scheme and
higher communication overhead. To date PBFT has gained considerable inter-
est in the blockchain community for its application in blockchains with small
network size and permissioned access. We will introduce it in Section 1.3.

1.2 The Nakamoto Consensus

Since its inception in 2008, Bitcoin has become the leading figure in the cryp-
tocurrency plethora. As of the first quarter of 2018, the Bitcoin network has
about 10,000 mining nodes and market capitalization of more than 200 bil-
lion dollars. The popularity of Bitcoin and other cryptocurrencies has brought
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huge academic and industrial interest to blockchain, the enabling technology
behind the cryptocurrencies and many emerging distributed ledger systems.

Out of various aspects of Bitcoin, the celebrated Nakamoto consensus [Nak08]
is the key innovation to its security and performance. Similar to distributed
computing systems, the consensus target for blockchain is the network’s en-
tire transaction history - not only the transactions’ content, but also the their
chronological order. In a practical blockchain system such as Bitcoin and
Ethereum, the consensus protocol also needs to consider various physical fac-
tors such as network connectivity, network size, and adversarial influence. In
this section we introduce the Nakamoto consensus protocol from a distributed
system point of view.

1.2.1 The Consensus Problem

Consensus Goal The goal of the Nakamoto consensus is all nodes form a
unified view on the network’s transaction history. Similar to the four conditions
for BFT consensus in the previous section, here gives the adapted conditions
for the Nakamoto consensus:

• Finality (Probabilistic): For every block that has been attached to
the blockchain, the drop-off probability asymptotically becomes zero.

• Agreement: Every block is either accepted or dropped off by all hon-
est nodes. If accepted, it should have the same block number in all
blockchain replicas. In other words, all honest nodes agree on the same
blockchain.

• Validity: If all nodes receive a same valid block, then this block should
be accepted into the blockchain. The genesis block is good example.

• Hash-Chain Integrity: The blockchain contains all blocks up to the
current block number. For block B with block number t and block B′

with block number t + 1, the hash value of the previous block in B′ is
the hash of B.

1.2.2 Network Model

Like most public blockchain networks, the Bitcoin network is a peer-to-peer
overlay network based upon the Internet. Every node runs an instance of the
Nakamoto protocol and maintains a replica of the blockchain. We model the
network as an asynchronous message-passing system with bounded transmis-
sion delay between two honest nodes, the same network model we assumed for
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the distributed computing systems in section 1.1. In addition to network syn-
chrony, the Bitcoin network also features permissionless access and best-effort
information propagation.

Permissionless Access

The Bitcoin is the first permissionless blockchain system and no authentication
is required for a new player to instantiate a node and participate in the network.
Specifically, to join the network a fresh node needs to set up in three steps:

1. Fetch a list of initial peers from several known DNS servers.

2. Search for new peers by asking its current peers and listening for sponta-
neous advertisements from other peers. Make sure the number of peers
does not go below a minimum value (currently 8 for Bitcoin).

3. Retrieve a blockchain replica from peers and start normal operation.

To leave the network, a node simply disconnects. It will be gradually purged
from the peer-lists of its peers. Since the transactions containing the node’s
public addresses have been written in the blockchain, the node can reclaim the
same public address and hence its unspent transaction outputs when it rejoins
the network using the same address in the future.

Information Propagation

The information propagation and message passing dynamics were first ana-
lyzed in [DW13]. There are two types of messages contributing to the consen-
sus process: transaction and block. Figure 1.4 shows the diagram of one-hop
propagation of a block. The propagation of transactions is in the same manner.
The validation of a block consists of the validation of all transactions in the
block and the verification of the hash value of the block header. The advertise
message contains the hash of the validated block (or a list hashes of validated
blocks). If node B sees a block that is new to its blockchain replica, it sends to
node A a get block message containing the hash of the desired block. Finally
node A transmit the desired block to node B, which then repeats this process
with its own peers except node A.

Note that once a node B has an economic incentive to pass the block around:
when other nodes know this block, they are less likely to create conflicting
blocks (which will cause a fork) and more likely to accept the later block
created by B, which eventually helps B make better use of its computation
power and harvest more block benefits.
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Figure 1.4: One-hop block propagation between two nodes

1.2.3 The Consensus Protocol

The Nakamoto consensus protocol is executed in a distributed fashion. Each
node runs the same protocol and manages its own blockchain replica indepen-
dently. The security of the consensus depends on the majority of nodes being
honest, ie. running the correct version of the Nakamoto protocol. The protocol
can be summarized into the following three rules for a single node:

1. Message Passing Rule: All newly received or locally generated blocks
and transactions should be broadcast to peers in a timely manner.

2. Validation Rule: Blocks and transactions need to be validated before
being broadcast to peers or appended to the blockchain. Invalid blocks
and transaction are discarded.

3. Longest-Chain Rule: The longest chain is always the desired chain.
Mining should be aimed at extending the longest chain by appending new
blocks to it. If the node receives a valid block B∗ with the same height
as the block B that it is still working on, it discards B and appends the
B∗ to the blockchain and starts working on the new chain.

4. Proof-of-Work (PoW): The generation of a block includes inserting
a nonce into the block header. The hash of the header should be less
than a particular value, which is also called the PoW difficulty. Higher
PoW difficulty yields more hashes expected for finding such a nonce. For
security reasons, the PoW difficulty is automatically adjusted so that the
average block generation interval of the network remains a constant value
as the gross hashing power fluctuates (currently 10 minutes for Bitcoin).

As a result, the majority decision of the network is represented by the longest
chain, which embodies the greatest amount of PoW computation effort.
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Probabilistic finality According to the longest-chain rule, blocks that end
up in a chain branch that is not the suffix of the longest chain shall be discarded
or “orphaned”. This means any block in the blockchain (except the genesis
block) can be revoked, since it is possible for a powerful attacker to start from
an early block and redo the proof-of-works all the way up to current blockchain
height so that the network will acknowledge this new chain as the longest. On
the bright size, if the attacker has less than 50% of the network’s gross hashing
power, it will produce blocks slower than the rest of the network. Let p denote
the hashing power percentage controlled by the attacker and p < 50%. Then
the probability the attack will eventually catches up from m blocks behind is:

P{Catch-up} =
( p

1− p
)m

(1.1)

Since p < 50%, this probability drops exponentially asm increases. In other
words, revoking a block from the blockchain is computationally impossible if
more than half of the hashing power is owned by honest nodes. Currently in
Bitcoin m = 6 is used as the transaction confirmation time. All blocks that
have at least 6 descendants are considered probabilistically finalized.

Optional: Challenges, network partition problem, scalability co-
nundrum

1.3 Emerging Blockchain Consensus Algorithms

Due to the inherently tight trade-off between security and scalability in PoW
based blockchains, researchers have been exploring new blockchain schemes
to support higher transaction volume and larger network size with lower en-
ergy consumption. This section introduces several promising non-PoW consen-
sus algorithms: proof-of-stake (PoS), PBFT-based consensus protocols, Ripple
consensus protocol, proof-of-elapsed-time (PoET), and IoTA’s Tangle algo-
rithm. These algorithms are proposed either as alternatives to PoW for pub-
lic blockchains (PoS, PoET) or for domain-specific applications (PBFT-based,
Ripple, IoTA Tangle). We will go through their consensus protocols and briefly
analyze their fault-tolerance limits and security concerns.

1.3.1 Proof-of-Stake

Proof-of-Stake (PoS) was proposed by the Bitcoin community as an alternative
to PoW. Compared to PoW in which miners race for the next block with brute
computing force, PoS resembles a new philosophy of blockchain design that
the race should be carried out in a “civilized” manner that saves energy and
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maintains security. PoS maintains a set of validators who participate in the
block generation process by depositing an amount of currency (stake) in the
competition, which is designed in a way that a bigger stakeholder has a higher
chance to win the competition.

There two major types of PoS: Chain-based PoS and BFT-style PoS. Chain-
based PoS is the original design of PoS and got its name from retaining the
longest-chain rule of Nakamoto consensus. It was first implemented in the
cryptocurrency Ppcoin, later known as Peercoin [KN12]. In comparison, BFT-
style PoS leverages the established results of BFT consensus for finalizing new
blocks. In this section we introduce the basics of chain-based PoS. BFT-style
PoS will be introduced along with other BFT consensus protocols in 1.3.2.

Chain-based PoS

In chain-based PoS, the blockchain maintains a set of validators who partic-
ipate in the lottery for the right to generate the next block. For every block
generation cycle, chain-based PoS runs in two steps:

• Step 1. Every validator invests a stake in the competition for block
generation. The deposited stakes are kept frozen until the end of this
block generation cycle.

• Step 2. After all validators deposit their stakes, the network performs
a generator selection algorithm to pseudo-randomly select the generator
from validators according to their stake value. The chosen one then
generates the new block and claims the block benefit in the same way as
a PoW miner.

Fault tolerance Analogous to PoW in Nakamoto consensus, as long as all
honest validators follow the protocol and own more than half of the total stake
value, the probability of a block being revoked from the blockchain drops expo-
nentially as the chain grows. From a socio-psychological perspective, attackers
should be more reluctant to perform 51% attack in a PoS system than in a
PoW system. Because for most attackers losing all stakes is more economically
devastating than wasting computing power.

Other security concerns Nonetheless, there are many other practical is-
sues concerning the stability and security of chain-based PoS. Here we identify
two of them.

1. Time value of stake Due to the PoS’s strong resemblance of capital-
ism where a dominant stakeholder can invest-profit-reinvest its capital
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and profit till a monopoly status. To alleviate the monopoly problem
and encourage small stakeholder to participate in the game, a practi-
cal method is to let the unused stakes (of which the validators have not
been a generator since the initial deposit) appreciate in value with time.
Once a validator is chosen as the generator, its stake value returns to
the default value at time zero. In the meantime the stakes of unchosen
validators continue appreciating. Take Peercoin for example, the stake
is measured by coin age, which is the product of the deposited currency
amount and the time elapsed since the initial stake deposit. The winning
probabilities for small stakeholders grow in time as long as their stakes
are kept frozen. On the other hand, to prevent a stake from accumulat-
ing too much time value which can be exploited by a malicious validator
to lock in a future block, the time value of a stake is limited by an upper
bounded, for example 100 block generation cycles.

2. Double-bet problem This is also known as the nothing-at-stake prob-
lem. When there are multiple parallel chain branches (forks), a PoS
validator has the incentive to generate blocks on top of every branch at
once without additional cost. In PoW, however, a miner has to do that by
divesting its precious computing power to each additional branch. There-
fore the chain-based PoS system need to incorporate a penalty scheme
against those who place double bets. Possible choices include forfeit-
ing the frozen stake, nullifying the block benefit for the correct bet, etc.
However, these penalty schemes will be ineffective if a group of valida-
tors with more than 50% of the network’s total stake value collude to
maintain parallel chains.

1.3.2 BFT-based Consensus

BFT-based consensus protocols typically require high network connectivity
and all nodes to reveal their true identities to others, which are a good fit for
permissioned blockchains where the network size is small and the consortium
of participants are known a priori. Similar to that of Nakamoto consensus, the
goal of BFT-based consensus is to ensure all participants agree on a common
history of blocks, which requires the correctness of block content and block or-
der. However, there is a major difference between them: the finality condition
for BFT-based consensus is deterministic. In other words, blocks will never
been tampered once written into the blockchain.
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PBFT for Blockchain

As we discussed in the previous section, PBFT is a classic consensus protocol
for distributed computing based on state machine replication. To be used in a
blockchain scenario, PBFT needs to adapt in the following ways.

1. Parallelism In PBFT replicas are separated into a primary and back-
ups for every view. However the decentralization nature of blockchain
requires that all nodes should be able to process client transactions as a
primary and relay other’s transactions. More specifically, when any node
is ready to broadcast its new block, it initiates a new instance of PBFT
by broadcasting a Pre-Prepare message containing this block. To deal
with Pre-Prepare messages from different sources, the Prepare phase and
Commit phase need to be modified in the way that the received blocks
should be processed in chronological order. In other words, there can
be multiple parallel protocol instances running and interacting in the
Prepare and Commit phase.

2. Dynamic view change As there is only one primary in the original
PBFT for each view, the view-change protocol can be executed in a rather
orderly manner. In blockchain since every node can act as primary, the
view-change protocol should be able to update multiple primaries in a
single execution.

Theoretically, PBFT is able to tolerate f Byzantine nodes if the network
size N ≥ 3f + 1. In practical scenarios, there can be many implementation
related issues preventing PBFT from realizing its full potential, with network
connectivity being the major bottleneck. The operational messages in PBFT
are time sensitive and a lowly connected network may not be able to execute
PBFT in the correct manner. To make PBFT work most reliably, a fully
connected network in required.

There are a handful blockchain initiatives using an adapted version of
PBFT for consensus. Examples include Hyperledger Fabric3 [ABB+18], Stel-
lar [Maz15]. Interested readers may refer their specific implementations of
PBFT.

BFT-style PoS

BFT-style PoS has been used in Tendermint [Kwo14] and Ethereum’s Casper
initiative4 [BG17]. Instead of following Nakomoto’s contention-based blockchain

3Although PBFT is used currently, Hyperledger Fabric is designed to support an arbitrary
consensus module in a plug-in fashion.

4The Ethereum Foundation plans to replace PoW with Casper PoS by 2019.
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generation process, BFT-style PoS embraces a more radical design in which
the set of validators periodically finalize blocks in the main chain through BFT
consensus. Here we use Ethereum Casper as an example. Similar to PBFT,
Casper finalizes blocks from checkpoint to checkpoint. Each validator keeps
a replica of the blockchain as well as a checkpoint tree. In every checkpoint
cycle, Casper runs in following steps:

• Step 1. Every validator deposits an amount of currency (stake). The
deposited stakes are kept frozen until the end of this checkpoint cycle.

• Step 2. Every validator grows new blocks from a justified checkpoint
using a block proposal mechanism and then broadcasts them timely. No
consensus is needed between validators at this time.

• Step 3. After a checkpoint interval is reached (100 blocks in Casper),
the validators begin to form a consensus on a new checkpoint. Every
validator casts a vote for a checkpoint block and broadcasts its vote to
the network. The vote message contains five fields: hash of the source
checkpoint s, hash of the voted target checkpoint t, height of s, height
of t, and the validator’s signature.

• Step 4. When a validator receive all votes, it reweighs the votes by
sender’s stake value and then computes the stake-weighted votes for
each proposed checkpoint block. If a checkpoint t has a 2/3 approval
rate (super-majority), then the validator marks t justified the source
checkpoint s finalized. All blocks before s are also finalized.

A fundamental difference between chain-based PoS and BFT-style PoS is
that the latter offers deterministic finality. In other words, BFT-style PoS guar-
antees a finalized block will never be revoked in the future, while chain-based
PoS and PoW don’t rule out this possibility. Importantly, the deterministic
finality also enables the punishment for double-betting validators (ie. solv-
ing nothing-at-stake problem). Because every finalized block comes with the
proposer’s public address, a validator is accountable for all finalized blocks it
had proposed. Once it is found double-betting, the consensus protocol can
legally forfeit the frozen stake of the double-betting validator and revoking the
conflicting blocks.

Fault tolerance Since a proposed checkpoint needs a 2/3 approval rate to
be justified, this algorithm can tolerate up to 1/3 faulty validators ideally.
Nonetheless, due to the immaturity of PoS and specially the Casper PoS, there
are many security and performance concerns that haven’t been addressed. For
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example, what is the optimal checkpoint interval for the trade-off between se-
curity and communication efficiency, how to design a reliable and efficient block
proposal mechanism without consensus until the next checkpoint, etc. We will
keep following the progress of Casper and other BFT-style PoS blockchains.

1.3.3 Proof-of-Elapsed-Time (PoET)

PoET concept was proposed by Intel in 2016 as an alternative to PoW. It is
currently used in Hyperledger’s Sawtooth project [HYP16]. Compared to com-
peting with computing power in PoW or currency ownership in PoS, PoET im-
plemented a contention scheme based on a random back-off mechanism which
has been widely used in medium access control protocols for local area net-
works. For a single block generation cycle, PoET is as simple as the following
two steps:

• Step 1. Each validator waits a random length of time (back-off).

• Step 2. The first validator finishing the back-off becomes the generator.

Trusted random back-off To ensure the back-off time of each validator
is truly random and fully elapsed, the back-off mechanism in each validator
should be verified and trusted by all others. In practice, this can be achieved
with a specially designed microprocessor that can execute sensitive programs
in a trusted execution environment (TEE) or simply an “enclave”. As as 2018,
Intel and ARM are the market leaders for such microprocessors. Take Intel for
example, some of its six-plus generation Core-series microprocessors are able to
run Intel’s Software Guard Extensions (SGX), which enables certain security
services such as trusted execution and attestation [CD16]. In a PoET based
blockchain, when a validator joins the network, it acquires the trusted back-off
program from peers or a trusted server and runs it in a SGX-enabled enclave.
Then it sends an attestation report to the rest of the network indicating the
authentic back-off program is loaded in its enclave. After successfully finishing
a back-off, the validator proceeds to generate the now block; meanwhile the
trusted back-off program in the enclave generates a certificate of completion
which will be broadcast along with the new block.

Fault tolerance Theoretically, the PoET scheme can tolerate any number
of faulty validators, as long as the back-off program running in a validator’s
enclave can be remotely attested by others, even if the hosting validator is not
trustworthy. However, since each enclave runs the same back-off program inde-
pendently, a rich validator can invest in multiple enclave instances to shorten
its expected back-off time. This resembles PoW’s economic model, with the
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only different that miners invest in TEE hardwares instead of mining devices.
Therefore PoET needs to make sure more than 50% enclaves are in the hands
of honest validators.

Hardware vendor dependency Another major drawback of PoET is its
dependence on TEE platform providers, namely Intel and ARM, for pro-
viding TEE enabled hardwares and remote attestation services. Take Intel
SGX for example, that means the security of the PoET system is bounded by
the security of Intel’s microprocessors and the reliability of Intel’s attestation
server. This explicit attack surface to some extent contradicts the blockchain’s
robustness-through-decentralization ideal.

1.3.4 Ripple

Operated by the Ripple company, Ripple is a real-time gross settlement net-
work (RTGS) providing currency exchange and remittance services. Unlike
public blockchain systems where anyone can participate in the validation pro-
cess, Ripple regulates a set of known validators that mainly consist of compa-
nies and institutions. They run the Ripple server program and accept transac-
tion requests from clients. A Ripple client only needs to submit transactions
to their designated validator and the validator network will fulfill this trans-
action through consensus. Essentially, validators run the Ripple consensus
protocol [SYB+14] in a distributed manner and form consensus on a common
ledger of transactions.

Ripple consensus protocol

We will use “node” and “validator” interchangeably subsequently. In the val-
idator network, each node p maintains a Unique Node List (UNL) of nodes,
which is the only subnetwork p needs to trust. The Ripple consensus protocol
is applied by each node for every consensus cycle. For each cycle, the protocol
proceeds in four steps:

• Step 1. Each node prepares a candidate set containing all valid trans-
actions it has seen, which may include new transactions submitted by
clients and old transactions held over from the previous consensus cycle.

• Step 2. Each node combines its candidate set with the candidate sets
of its UNL peers, votes “yes/no” on the validity of each transaction in
the combined set, and sends votes to its UNL nodes.

• Step 3. Each node upon receiving votes from its UNL nodes, discards
from its candidate set the transactions with a “yes” rate below a mini-
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mum threshold. The discarded transactions may be reused in the next
consensus cycle.

• Step 4. Repeat step 2, 3 several rounds. In the final round, the threshold
is increased to 80%. Each node appends the remaining transactions to
its ledger and ends the consensus cycle.

Fault tolerance In short, a transaction is finalized if it is approved by at
least 80% nodes of the UNL. As long as f ≤ 1

5(m − 1) where m is the size
of a UNL and f is the number of Byzantine nodes in the UNL, the Ripple
consensus protocol is Byzantine-fault tolerant. This is a rather strong security
assumption as it should be satisfied by every UNL-clique. In practice, this
is fulfilled by Ripple’s validator authentication scheme which ensures the true
identity of any validator is known to others.

Connectivity requirement Since every node only keeps communication
links to its UNL peers, different nodes may have disparate or even disjoint
UNLs, which leads to the network partitioning problem as discussed previ-
ously. In a simple scenario, a group of nodes connected by UNL relationships
can form a clique; two UNL-cliques may agree on two conflicting ledgers in
parallel if there is little communication between them. To prevent this prob-
lem, the Ripple network puts the following connectivity requirement for any
two subnetworks Si, Sj :

|Si ∩ Sj | ≥
1

5
max{|Si|, |Sj |}, ∀i, j (1.2)

This requirement guarantees that no two UNL-cliques can agree on two con-
flicting transactions, because otherwise they would not pass the 80% approval
requirement in the Ripple consensus protocol. Note that this connectivity re-
quirement relies on Ripple company’s supervision and thus is not realistic for
public blockchains such as Bitcoin where there are more than ten thousand
pseudonymous validators (miners).

Complexity analysis We assume every message has a fixed size, which is
approximately the size of all transactions in the candidate set. Since a node
only needs to communicate with its UNL peers, the message complexity of
Ripple consensus protocol is O(Km2), where m is the size of UNL and K is
the number of UNL cliques in the network.
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Table 1.6: A comparison of blockchain consensus algorithms
PoW Chain-

based
PoS

BFT-style
PoS

PoET PBFT Ripple
Protocol

Permission
Needed

No No No No Yes Yes

Third Party
Needed

No No No TEE
platform
vendor

Identity
manager

Identity
manager
(Ripple
Company)

Consensus
Finality

Probabi-
listic

Probabi-
listic

Determi-
nistic

Probabi-
listic

Determi-
nistic

Determi-
nistic

Connectivity
Requirement

Low Low Low Low High High

Fault Toler-
ance

50% hash-
ing rate

50% stake
value

33.3%
stake value

50% en-
clave
instances

33.3% vot-
ing power

20% nodes
in UNL

Example Bitcoin,
Ethereum,
Litecoin

Peercoin,
Blackcoin

Ethereum
Casper,
Tendermint

Hyperledger
Sawtooth

Hyperledger
Fabric,
Stellar

Ripple

Optional: (Modified Proof-of-Work) GHOST rule [SZ15], Ethash
in Ethereum

Optional: (DAG-based ledger structure) IOTA Tangle [Pop16]

1.4 Evaluation and Comparison

Table 1.6 qualitatively evaluates all the consensus protocols mentioned in this
chapter. Specifically we consider the following aspects:

• Permission needed: Yes means the blockchain participants need to
be authenticated at the joining and reveal true identities to others. No
means any one join the network freely and pseudonymously.

• Trusted third party needed: Whether the network needs a trust third
party for a common service.

• Consensus finality: The finality of blocks in the blockchain. Proba-
bilistic means all written blocks (except the genesis block) are prone to
revocation, although with small probabilities. Deterministic means all
written blocks will never be revoked.

• Connectivity requirement: Low means a node only needs to maintain
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a minimum number of connections to peers. High means a node needs
to connect with a significant percentage of the network.

• Fault tolerance: What percentage of faulty participants the protocol
can tolerate. Different protocols have different adversarial models. For
example hashing rate matters in PoW while stake value matters in PoS.

1.5 Summary

Consensus is a core function of a distributed system. We introduced the ba-
sics of distributed consensus, two practical consensus protocols for distributed
computing, the basics of Nakamoto consensus, and several emerging blockchain
consensus protocols. These consensus protocols are evaluated qualitatively and
compared from different aspects. As of the year 2018, some of the protocols are
still in development, such as Ethereum’s Casper PoS, Hyperledger Sawtooth,
and Hyperledger Fabric. And we will see more of them to come.

Generally, we need to take into account two models when designing a
blockchain consensus protocol: network model and trust model. A highly
connected and amenable network allows the participants to propagate trans-
actions and blocks in a timely manner, which enables the use of message-heavy
consensus protocols with high security guarantees. On the other hand, a be-
nign trust model enables the utilization of highly efficient consensus protocols
with focus on performance rather than security. The Nakamoto consensus pro-
tocol and PoW consensus algorithms in general have limit transaction capacity
because they are deigned to endure uncertain network conditions and permis-
sionless access scenarios with near-zero trust. In comparison, the BFT-based
protocols and Ripple consensus protocol are highly efficient and support high
transaction capacity because they are deigned for domain-specific applications
in which high network connectivity is guaranteed and permissioned access is
enforced.

In conclusion, the choice of consensus protocol is vital to the balance be-
tween security, performance, and efficiency for a blockchain system. A protocol
designer needs to carefully consider the security requirement and performance
target, as well as the level of communication complexity the network can un-
dertake.
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