
CrossChain: An Open Platform for
Cross-layer Blockchain Research

Ryan Xu, Hakkyung Lee, Ning Zhang, Xuan Zhang
Washington University in St. Louis, St. Louis, MO, United States

Abstract—There is an increasing number of possible appli-
cations to combine the fields of Blockchain and Internet of
Things (IoT) devices. In this paper, we introduce CrossChain,
a platform for researchers to start exploring the effects of
running a blockchain on an IoT device - specifically a Raspberry
Pi. Examples of three different consensus mechanisms were
explored and findings are presented below and more elaborately
in our repository. A visualization tool provides graphs for several
important attributes monitored in the system.

I. INTRODUCTION

It has been more than a decade since a blockchain was
introduced to the world for the first time. Blockchain was
initially invented by Satoshi Nakamoto as a method of im-
plementing Bitcoin, a decentralized cryptocurrency. With the
emergence of Bitcoin, blockchain itself has been developed
in various ways, and many trials have been going through to
integrate blockchain into various fields until now. Meanwhile,
the Internet of Things (IoT), a concept of connecting physical
devices mutually via the Internet, has started to appear around
a similar period. Cisco System estimated IoT to be started
between 2008 and 2009 [7]. Since then, tech companies,
regardless of their size, have dived into the IoT field and
started releasing devices to connect the world like never
before. Recently, Facebook unveiled their Portal product line
- with Google following with their own Google Home Hub
- in an effort to connect people even more. With two new
fields explosively arising over the last decade, a question
naturally arises of what possibilities are there to combine
these two fields? There exist many exciting proof-of-concept
applications but rarely could we find actual steps on how to
set up blockchain on an IoT device [4].

We set out to explore blockchain and IoT ourselves. We
chose to use Raspberry Pi Model 3B+ (RPi) as our IoT device
due to its massive popularity and moderate power - we used
a number of these devices to construct a blockchain network.
In terms of Operating System (OS), we started out using the
Raspbian Stretch, the official OS dedicated for RPi, but later
moved to Ubuntu 18.04 LTS for ARM64 due to its lack of 64-
bit support. The methodology of switching OS is documented
in the later section.

When it comes to selecting which blockchain to run on
our RPi, we wanted to explore various distributed consensus
algorithms. We considered its popularity within the blockchain
field and accessibility of its community for smooth trou-
bleshooting. Moreover, while some blockchains officially sup-
port RPi, we excluded them from our list if we could not run

a full node for configuring a network. Since we could not test
consensus algorithms exhaustively due to our limited time,
we narrowed our choices down and selected 4 blockchains,
where one of each can represent the behavior of a particular
consensus algorithm. The consensus algorithms we agreed
on are Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-
of-Authority (PoA), and Crash Fault Tolerance (CFT) based
algorithms, and each of them is available via Ethereum Geth,
Qtum, Ethereum Parity, and Hyperledger Fabric, respectively.
However, unfortunately, after numbers of trials, we have
concluded that Hyperledger Fabric is not plausible on RPi due
to lack of supporting official base image for ARM architecture
and limited hardware memory.

We present our study and experience of installing current
state-of-the-art blockchain packages on RPi throughout this
paper and introduce CrossChain - a platform to help visualize
and monitor the system impacts of different consensus mecha-
nisms on RPi. Using CrossChain, a user can easily keep track
of some blockchain information such as current block number,
number of transactions within the generated block, and the
size of the block. System information such as CPU usage and
network data can be retrieved and visualized as well.

II. RELATED WORK

Blockchain in combination with IoT has only started be-
ing an active research area recently. Conoscenti et al. [4]
conducted a systematic literature review and found 18 use
cases of blockchain, but only 4 were specifically designed for
IoT. Nonetheless, the potential of the combination cannot be
understated as Ksheri outlines in his column [5].

Blockchain use in IoT is still in an incipient stage. One use
of blockchain is to leverage the power of smart contracts to
automate policy enforcement. Researchers propose concepts
on using smart contracts to facilitate the data integrity upon
entry in the supply chain[E], and to create a cross-platform
IoT collaboration framework[C], where both two works focus
on the implementation of the policy. Other researchers inves-
tigated setting up a blockchain network for IoT devices: [F]
set up a simulation of IoT using RPis and the RPis are full
nodes; several other researchers realized the IoT devices can
be very limited in terms of the operating system, storage, or
computation power, so they designed the blockchain network
in a different way: [A] designed a blockchain-based framework
for smart home data transaction between IoT device; [B]
proposed an access management framework. Both of the work
put the burden of storage to outside machines, not IoT devices



themselves. [D] took a different approach, while insisting
using a large public chain, [D] managed to make a light client,
who does not store the chain data, for IoT devices in smart city
use scenario. There are works focusing on the performance
too: [B]’s follow-up work did a scalability evaluation on
the framework. The framework is tested with an increasing
number of virtual clients and the latency, throughputs are
measured.

In our work, we took the same assumption F held: we use
RPis to simulate IoT devices, a computer with an operating
system but limited hardware resource. Built upon this pre-
sumption, we designed and implemented an infrastructure for
inspections of blockchains with multiple consensus protocols
from a performance perspective.

III. COMPATIBILITY OF DISTRIBUTED CONSENSUS
ALGORITHMS ON THE IOT DEVICE

Blockchain can be categorized into two groups at a high
level: a public and a permissioned blockchain. A public
blockchain is a network where everyone can participate and
contribute to maintaining the network. On the other hand, a
permissioned blockchain limits the participants of the network.
Within these classifications, each blockchain adopts a different
distributed consensus algorithm. While PoW, PoS, PoA and
CFT-based consensus are considered on RPi, it turns out that
Hyperledger Fabric, which uses CFT-based consensus algo-
rithms, couldn’t be hosted on our RPis due to some limitations.
Here is a list of classified limitations appearing throughout this
section: architecture, memory, processing power, and chain
specific. A brief overview is shown in Table I.

A. Proof-of-Work

PoW utilizes a cryptographic hash for mining a new block.
Many blockchains, including Bitcoin, are based on PoW. Since
the mining process on PoW-based blockchain is a brute-force,
it requires a huge amount of processing power. As the number
of blocks and participating miners increase, the difficulty of
solving the hash problem scales exponentially. Keeping this
in mind, Ethereum was considered as PoW-based blockchain
due to its popularity and robust documentation. The following
details the attempts of running Ethereum with PoW on RPi
and observations.

1) Ethereum Geth on Raspbian: Raspbian Stretch was
considered as a starting point. Geth, a Go implementation of
Ethereum client, was installed without any error. Connecting
RPis each other to create a private network and sending
transactions from one to another was also successful. However,
mining on RPi was impossible. Whenever the mining com-
mand was called, an out-of-memory and memory allocation
failure error appeared. At first, we assumed that it was due to
limited memory. However, after diving into various Ethereum
forums, we are reasonably certain as of now Geth requires
64-bit for mining. Since Raspbian Stretch only supports 32-
bit, Ubuntu for ARM64, a 64-bit OS, is considered as a next
target.

2) Ethereum Geth on Ubuntu: On the same RPi, Ubuntu
18.04 for ARM64 was installed. After following the same steps
to set up Geth and create a private network, a full node was
successfully set up. This time, mining on RPi was possible,
but with a certain limitation. In a private blockchain of three
mining RPis, only 13 blocks were mined in the span of 18
hours, even with the initial difficulty of 0. The problem was
that RPi could not handle the scaling difficulty. To mitigate this
issue, Geth had to be modified and recompiled. The difficulty
was hardcoded to be 0x50 so that it remains a constant. This
value, which is a heuristic, allows RPi to mine one block per
10 seconds on average. Thus we concludes that PoW on RPi
is possible, but there still exists a processing power limitation.

B. Proof-of-Stake

Although PoW is the mainstream consensus, wasting a
massive amount of computational power is one of its most
critical drawbacks. As an alternative, PoS was proposed. The
mining process on PoS-based blockchain mainly depends
on the total amount of cryptocurrency a node is staking.
Given that PoS is energy efficient and less computationally
heavy, PoS seemed to be well-suited for IoT devices. Initially,
Ethereum with PoS was considered as a candidate. However,
it turns out that it failed to run on RPi. Qtum was considered
as an alternative.

1) Ethereum Prysm on Ubuntu: Ethereum has been plan-
ning and working on switching from PoW to PoS. Prysm, the
only PoS-supported Ethereum client, is tested on RPi for the
first target. Installing Prysm can be done in two ways: using
Docker and Bazel, a build tool. Docker method did not work
due to architecture compatibility. While installing Bazel was
successful, building Prysm via Bazel was impossible due to the
out-of-memory issue. Even after setting up a swap memory,
RPi crashed in the middle of the building process. Concluding
that running Prysm is not possible with our RPi due to memory
limitation, Qtum, a next candidate, was tested.

2) Qtum on Ubuntu: Since Qtum officially supported ARM
architecture, installing was relatively simple. However, to set
up a private network, regtest mode had to be used, which
comes with limited functionalities. Note that in regtest mode,
while it is possible to run PoS, it automatically generates a
block for every 30 seconds. With that said, Qtum provides
less control over the staking process. It is either joining the
staking process or not. Moreover, a user cannot control the
staking amount. As soon as the confirmation of 500 blocks
is met for each block, the balance acquired from that block
goes into staking automatically. Thus it is concluded that PoS
is possible on RPi, with chain specific limitations.

C. Crash Fault Tolerance Protocol

Crash Fault Tolerance (CFT) is a protocol in which a
consensus can be reached even with a certain number of faulty
nodes. However, unlike Byzantine Fault Tolerance (BFT)
protocol, CFT cannot maintain the network under the presence
of malicious nodes. CFT is often used for a permissioned
blockchain, because the participants are usually identified



TABLE I: Current state of support of blockchain on RPi
(O : Supported 4 : Partially supported X : Not supported)

Ethereum (Geth) Ethereum (Parity) Ethereum (Prysm) Qtum Hyperledger Fabric

Availability
on RPi 4 O X O X

Configuring a
private network O O X 4 O

Consensus
algorithm Proof-of-Work Proof-of-Authority Proof-of-Stake Proof-of-Stake Crash Fault Tolerance based

(Raft, Kafka)

Operating System Ubuntu ARM64 Ubuntu ARM64 N/A Ubuntu ARM64 N/A

Limitations Processing power Chain specific Architecture, Memory Chain specific Architecture, Memory

ahead of time. Hyperledger Fabric, one of the most popular
permissioned blockchain, leverages this fact by adopting CFT-
based consensus algorithms because when deployed within
a single enterprise, or operated by a trusted authority, fully
Byzantine fault-tolerant consensus might be considered unnec-
essary and an excessive drag on performance and throughput
[3]. Hyperledger Fabric currently supports Raft and Kafka, a
CFT implementation based on “leader and follow” model.

1) Hyperledger Fabric on Raspbian: Hyperledger Fabric,
a popular permissioned blockchain framework, uses Docker
images to build the binaries. Unfortunately, up-to-date images
built for ARM architecture was not found. Although images
that third parties compiled for ARM was found, all were
either very outdated or not for Raspbian. Hyperledger Fabric
community also stated that as of now Hyperledger Fabric
does not officially support 32-bit. On top of that, we recently
noticed that the official wiki page recommends at least 4GB
of memory for running Hyperledger Fabric, which is another
obstacle for RPi. Since RPi does not meet the hardware
requirement, running on different OS was not considered and
it is concluded that running Hyperledger Fabric is not possible
due to architecture compatibility and memory limitation.

D. Proof-of-Authority

PoA is yet another type of consensus algorithm, which was
proposed as an alternative of PoW. Similar to PoS, PoA does
not require a huge amount of computing power for generating
blocks, which makes it suitable for a low power device.
However, while PoS requires staking the monetary value to
become a validator, PoA utilizes an identity of the validator
as a form of staking [2]. Since staked identity relates to the
reputation of the validator, misbehaving will directly harm the
reputation of the validator in the real world. In this way, the
validators will highly likely align securing the network with
keeping one’s reputation intact.

Currently, three different PoA implementations are available
on Ethereum: Aura via Parity, a Rust-based Ethereum client,
Clique via Geth, and IBFT 2.0 via Pantheon, another Ethereum
client written in Java. While Pantheon is an open source and
capable of building a private network, it is mainly targeted for
enterprise usage. In addition, the Java-based program requires

lots of memory to run smoothly, which is a crucial reason
Pantheon was not selected here. Between Parity and Geth,
Parity with Aura consensus engine was chosen mainly because
Parity provides more comprehensive official documentation
regarding PoA settings.

1) Ethereum Parity on Raspbian: The first trial was build-
ing Parity from source code. Since Parity is written in Rust, it
uses Cargo, a package manager for Rust, for building. While
installing dependencies was successful, building via Cargo was
not due to the out-of-memory issue. Since this could be an OS
issue just like Geth case, Ubuntu for ARM64 is considered.

2) Ethereum Parity on Ubuntu: Again, installing Parity
from the source failed due to the same error. After a bit of
searching, it turns out that 1G of RAM was not enough to
support one of the main dependencies, rustc, a Rust language
compiler. Luckily, Parity was also officially distributed via
Snap, an Ubuntu packaging manager. Using Snap, Parity
was successfully installed on RPis. Furthermore, there is one
benefit for using Snap; whenever there is a new release, Snap
automatically keeps the version up to date. Running a full node
and setting up a private network was also possible without any
constraints. However, there is one chain specific limitation.
Since a validator should be selected beforehand, it is hard to
trust and grant the authority to a person or a group who is not
known and cannot meet face to face. Assuming that PoA is
used among trusted groups, it is concluded that running PoA
on RPi is by far the best option.

IV. CROSSCHAIN FRAMEWORK DESIGN

Taking in our findings of the various blockchain implemen-
tations, we sought to create an introductory infrastructure to
assist researchers in exploring blockchain and IoT. Introducing
CrossChain, this platform supports examples of three consen-
sus algorithms present - PoW, PoS, and PoA - on multiple RPis
with Ubuntu 18.04 for ARM64. As explained before, Geth,
Qtum, and Parity are used as clients, respectively. CrossChain
has several aspects that can be useful to researchers.

First, thorough documentation found in the repository helps
how to install, set up, and run blockchains on the RPis. With
limitations and incompatibilities in linking many conventional
blockchains to RPis, this is a reliable and up-to-date tutorial



Fig. 1: System Work Flow Diagram

and resource. This hopefully will allow researchers to quickly
get a network up and running without going through trial-and-
error with numerous chains.

Secondly, a basic Graphical User Interface (GUI) was
created to help visualize some attributes that would be helpful
to researchers. For each blockchain, a block number, difficulty,
number of transactions, and the size of each block can be
gotten and graphed. Besides, the CPU usage of RPi in terms
of percentage is graphed to comprehend the computing load on
the device. Network data such as bandwidth, packets, latency,
and jitter are also tracked. These attributes can be analyzed to
determine how well blockchains operate on the RPis.

A user can add RPis that have been set up with the to
CrossChain GUI and choose which attribute to be graphed.
This helps visualizing data in a comprehensible manner. Ad-
ditionally, there is an option to log all the block data collected
as well as set the sample rate of network and system data.
This data is packed into a CSV file that is categorized by
the node, type of data, and consensus algorithm. In addition,
the sample rate of the network and system features can be
adjusted, though we will discuss later some minimum rate
limitations. Finally, switching between blockchain can be done
via GUI, though this involves starting and stopping the chain
remotely. This will aid making informed comparisons between
different blockchains.Though GUI at the current stage is rather
rudimentary, it is an viable starting point for exploring.

It should be noted with the current setup of CrossChain the
difficulty attribute is to be taken with a grain of salt. In PoW,
since Geth is modified, the difficulty of the chain is fixed and
the difficulty magnitude is the same for all blocks. In PoS, the
difficulty doesn’t affect the chain due to the staking mechanic
- the winner is determined by how much is staked and not
difficulty, so the actual block difficulty is set very low so that
the winner can quickly generate the block. It is apparent in
QTUM as the difficulty per block is on the order of the nano

scale. In PoA, the protocol does not use a difficulty parameter
at all so the value is simply a placeholder.

V. CROSSCHAIN SYSTEM IMPLEMENTATION

A. Blockchain

After many trial and error based on several online tutorials
and documentation, detailed guides on how to construct the
three blockchains can be found in the project repository.

PoW can be tested on Geth. As briefly explained in III-A2,
Geth was modified to make mining more feasible on the
RPis. Normally in PoW, the difficulty for mining a new block
scales based on the number of coins mined so far as well
as the number of nodes in the network, and it usually scales
exponentially. Unfortunately, due to the hardware limitations
of RPi, even with initial difficulty of 0, the default scaling
factor is too high for the RPi to mine at a reasonable rate. For
demo purposes, the difficulty is fixed to 0x50, which results
in mining a block about every 10 seconds on average. This fix
requires Geth to be recompiled. Again, due to limited memory,
it was cross-compiled and then transferred to the RPi.

PoS can be tested with Qtum’s regtest mode, where it is
suitable for creating a private network and generating blocks
and transactions. As Qtum’s initial state is a PoW/PoS mixed
stage for the initial 500 blocks, presumably for the ease of
growing the balance quickly, we chose to generate 500 blocks
manually and to wait for a few hours to transit into a pure
PoS stage.

PoA is available on Parity. Setting up a private chain with
Parity is quite similar to Geth. Simply prepare a genesis file
that serves as the genesis block and instantiate the chain. Un-
like PoW or PoS, PoA has a validator list, a list of authorities
who can seal a block. Make sure to designate a validator
beforehand to watch it creating new blocks. Furthermore, as
the only validators can seal blocks, the block generation time
is fixed to 5 seconds, which can be adjusted within the genesis
file, and the difficulty value turns out to be meaningless as a
result.

B. Graphical User Interface

The GUI was written in Python and utilizes PyQt5 and
pyqtgraph packages to create the interface [8,9]. A user can
add nodes to the GUI, which will create a Secure Shell (SSH)
connection. The connected node uses four monitoring threads
- one for each function call. Figure 2 shows a class diagram
of the GUI.

The first thread tracks the blockchain depending on which
consensus algorithm is selected. For PoW and PoA, Web3.py
- a python library for interacting with Ethereum - is utilized.
A filter is used to be notified when a new block is mined,
whose data will be parsed and collected. The coinbase address
is checked to see which block successfully mined. For PoS,
Qtum has its command line interface, qtum-cli. There are a few
more steps to obtain attributes such as block size compared to
Web3, but it can be done nonetheless. Because Qtum doesn’t
provide a filter for a new block, the block number is compared
instead - if it is different, we know a new block has been



Fig. 2: GUI Class Diagram

created. It is important to note that when the chain gets longer,
the time it takes to call some functions does get on the order
of tens of seconds.

The second thread tracks CPU usage by parsing /proc/stat.
The third thread follows network bandwidth and packets
using a tool called bwm-ng [10]. Finally, the fourth thread
monitors network latency and jitter using ping command to
test the reachability of the network. Since measuring power
consumption requires external hardware, it was excluded.

All of the data is packaged in dictionaries and sent via
signals to each node. A graphing function then plots whichever
attribute has been selected to plot. For block-specific attributes,
the graph refreshes with new data whenever a new block is
created. For system and network-specific attributes, the graph
refreshes with new data according to the sample rate, which
can be changed. If log data is selected, information will be
logged in two different JSON files per node - one for block
data and the other for network and system data.

Fig. 3: Graphing Latency on GUI

VI. EVALUATION

Figure 4 shows the hardware platform of the experiment.
Figure 3 depicts a screenshot capture of the GUI graphing
average latency for two nodes. Although CrossChain can fully

Fig. 4: Experiment Hardware Platform

supports examples of PoW, PoS, and PoA while creating
visualizations for attributes, the capabilities of the RPi are
limited; running a mining node as well as sampling multiple
systems and network attributes can accumulate to a fairly
heavy load on the system. To check the overhead in numeric
values, the performance overhead of the monitor functions
in Figure 2 and the run time of RPC are measured and
summarized in Table II and Table III.

TABLE II: The runtime of monitor functions

CPU usage Network Bandwidth Network Jitter and Latency
1.0272s 0.511s 0.8248s

The first type of the overhead comes from the run time
of the ssh commands used to get the performance stats,
including CPU usage and network indicators. We set up a
3-node network of PoS and recorded the run time of each
command through SSH. As these commands are consensus
independent, we believe that the numbers are representative.
For CPU usage and network bandwidth, three samples each
node was taken and the average was calculated. For jitter and
latency, the function measures the communication between
two IP addresses, so we measure the run time of this command



from NodeA to NodeB, NodeC to NodeB, NodeB to NodeA,
each for three times. It is worth noting that the run time of this
command highly depends on the configuration, where the user
can set up the number and interval of the signals sent from one
IP to another IP. In our system, the default is set as 5 signals
in total with the interval being 0.2s. The run time of these
commands is critical to be measured especially due to the way
we set up our system. Monitor threads are created according
to the sample rate, so if a function has not finished before the
sample rate has elapsed, a second instance of the same thread
will be created, causing a crash. We took three samples of
each three nodes and the average is presented below.

TABLE III: The runtime of RPC

PoW PoS PoA
0.37s 14.01s 0.04s

Second type of the overhead comes from the run time
for the RPC used to retrieve the information needed for
blockchain stats. A long run time can not only increase
the wait time for the user, but also potentially lead to not
up-to-date data. Although the run time for the RPC is
blockchain specific, we decided to show the recorded time
of the three blockchains we deployed below. For the testing
purpose, we decided to use the RPC to get difficulty as the
representative of the RPC. The recording is done in three
nodes, each repeated three times and average is reported. As
the PoA and PoW are both Ethereum, they use the same
set of APIs, we only did the testing on PoW. Also, through
testing we found that the run time of RPC can vary among
the nodes of the same private chain and we put this finding
as a problem to investigate in the future.

VII. CONCLUSION AND FUTURE WORK

We presented our experiences trying to configure popular
blockchains on RPis. While some trials did not succeed
for various reasons, we managed to install a blockchain for
each of the three main consensus methodologies. A Detailed
explanation of how to set the chains up can be found in
the project repository. We also provided a visualization tool,
CrossChain, to aid researchers in exploring the reactions of
the RPis while running blockchains.

There are a few avenues of future work. The first is adding
more functionality to the GUI to make it more robust and
automated. Secondly, as IoT devices become more powerful,
it is intriguing to see how improved hardware can help the
devices mine blocks more efficiently. At the time of writing
this paper, the Raspberry Pi Foundation has released the
Raspberry Pi 4, which has a configuration with 4 GB of RAM.
Knowing the how much performance increases in relation to
hardware improvements may be important in future IoT and
blockchain development.

REFERENCES

[1] POA Network. (2017). Proof of Authority: consensus model with
Identity at Stake. [online] Available at: https://medium.com/poa-

network/proof-of-authority-consensus-model-with-identity-at-stake-
d5bd15463256.

[2] Hyperledger. (2019). Introduction hyperledger. [online] Available at:
https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html.

[3] Conoscenti, Marco, Antonio Vetro, and Juan Carlos De Martin.
“Blockchain for the Internet of Things: A systematic literature review.”
2016 IEEE/ACS 13th International Conference of Computer Systems
and Applications (AICCSA). IEEE, 2016.

[4] Kshetri, Nir. “Can blockchain strengthen the internet of things?.” IT
professional 19.4 (2017): 68-72.

[5] Dorri, Ali, Salil S. Kanhere, and Raja Jurdak. “Blockchain in internet
of things: challenges and solutions.” arXiv preprint arXiv:1608.05187
(2016).

[6] Evans, D. (2011). The Internet of Things - How the Next Evolution
of the Internet Is Changing Everything. [online] Cisco. Available at:
https://www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoT IBSG
0411FINAL.pdf.

[7] Riverbank Computing Limited. “PyQt Whitepaper”
https://www.riverbankcomputing.com/static/Docs/PyQt4-
whitepaper/pyqt-whitepaper-us.pdf

[8] Luke Campagnola. (2016) Pyqtgraph https://pypi.org/project/pyqtgraph/
[9] Volker Gropp. https://github.com/vgropp/bwm-ng


