
Devils in Your Apps: Vulnerabilities and User
Privacy Exposure in Mobile Notification Systems

Jiadong Lou∗, Xiaohan Zhang†, Yihe Zhang∗, Xinghua Li†, Xu Yuan∗, and Ning Zhang‡
∗University of Louisiana at Lafayette, Lafayette, Louisiana, USA

†Xidian University, Xi’an, China
‡Washington University in St. Louis, St. Louis, Missouri, USA

Abstract—Witnessing the blooming adoption of push notifica-
tions on mobile devices, this new message delivery paradigm has
become pervasive in diverse applications. Accompanying with its
broad adoption, the potential security risks and privacy exposure
issues raise public concerns regarding its great social impacts.
This paper conducts the first attempt to exploit the mobile
notification ecosystem. By dissecting its structural elements and
implementation process, a comprehensive vulnerability analysis
is conducted towards the complete flow of mobile notification
from platform enrollment to messaging. Meanwhile, for privacy
exposure, we first examine the implementation of privacy policy
compliance by proposing a three-level inspection approach to
guide our analysis. Then, our top-down methods from documen-
tation analysis, application network traffic study, to static analysis
expose the illicit data collection behaviors in released applications.
In addition, we uncover the potential privacy inference resulted
from the notification monitoring. To support our analysis, we
conduct empirical studies on 12 most popular notification plat-
forms and perform static analysis over 30,000+ applications.
We discover: 1) six platforms either provide ambiguous KEY
naming rules or offer vulnerable messaging APIs; 2) privacy
policy compliance implementations are either stagnated at the
documentation stages (8 of 12 platforms) or never implemented
in apps, resulting in billions of users suffering from privacy
exposure; and 3) some apps can stealthily monitor notification
messages delivering to other apps, potentially incurring user
privacy inference risks. Our study raises the urgent demand for
better regulations of mobile notification deployment.

Index Terms—mobile notification, vulnerability analysis, pri-
vacy exposure.

I. INTRODUCTION

Mobile notification pushing pervasively exists, enabling
app providers to send advertisements or other messages of
interest to users. By delivering messages on devices’ screens,
the notification progressively becomes an effective way to
quickly and deliberately propagate information to target users.
A survey from Bussiness of Apps [41] has reported that over
50 billion mobile notifications have been sent to 900 million
users during H1 2018, and each US user received 46 push
notifications on average per day in 2019. Given such a mega-
scale market, any misuse of the system by an adversary, either
to spread misinformation and disinformation or to massively
collect private user data without explicit permission from the
users, is concerning. To ease the development of personalized
mobile notifications, more than 50% (out of 30,000+ analyzed
so far) of the apps are leveraging the mobile notification

For correspondence, please contact Prof. Xu Yuan (xu.yuan@louisiana.edu).

service in their interactions with customers. We analyze open-
sourced notification services and discover that the mobile
notification fulfills the message delivery and data collection
by calling the third-party libraries (i.e., Android SDK) while
messaging APIs are provided by the separate platforms to push
the notifications. With such handfuls of platform services built
into massive amounts of apps, it is of critical importance to
understand the potential security and privacy issues.

So far, the security of mobile applications has received
significant attention in the past several years and various
techniques were developed to analyze security properties [20],
[15], [55], [32], [16]. In addition, the detection of vulnera-
bilities and privacy leakage toward third-party libraries has
also attracted research community’s attentions [36], [35], [21],
[38], [40], [43], [57], [45], [46], [19], [24], [11], [29], [47].
Regarding mobile messaging services, many studies [34],
[8], [39], [56], [31] have been conducted to detect the mis-
use/vulnerabilities of old Google Firebase Cloud Messaging
system. Furthermore, a detection tool, i.e., Seminal, was de-
signed [17] to extract the semantic information of source codes
to evaluate the integration of notification SDKs. However,
a systematic security/privacy analysis toward the emerging
mobile notifications ecosystem remains unexplored yet.

In this paper, we conduct the first systematic security
and privacy exploration of the Android mobile notification
services provided by popular emerging platforms. Through
empirical study, we dissect the system designs of the mobile
notification ecosystem into four stages, i.e., platform enroll-
ment and key distribution, notification SDK configuration,
device tracking, and notification pushing through APIs. Ac-
cording to these stages, we identify four critical processes,
i.e., notification KEY configuration, application authentication,
messaging API, and message verification. Then, following
these processes, we analyze the potential vulnerabilities and
viable attacks to exhibit real-world threats.

We further analyze the privacy exposure issues of mobile
notification services. Our explorations are carried out from
two aspects, i.e., the data collection behavior in the notifica-
tion SDK and the user privacy inference through notification
monitoring. Regarding the former one, which ubiquitously
exists without users’ awareness, we first analyze the privacy
policies and their compliance. In particular, we divide the
privacy policy implementation into three levels and provide
the related APIs inspection methods, including calling time

checking and user grant parameter tracking, to examine the
compliance. Then, to reveal the data collection in apps, we
start from the documentation analysis for identifying the data
collection APIs, and then conduct a testing app network traffic
study for exploiting different types of user data collection.
After that, we conduct the taint analysis to extract sensitive
data flow in released apps while proposing two new sensitive
data sources i.e., user in-app event and Android geofencing
event. Beyond the code-level inspections on notification SDKs,
we also discover a new side-channel attack for privacy infer-
ence through notification monitoring, which is blamed on the
sharing access to the notification bar of the Android system.
That is, a malicious app with notification listening permission
can stealthily monitor mobile notification messages delivered
to other apps, so as to infer the user’s private information.

We conduct large-scale empirical studies on the 12 most
popular notification platforms and collect 30,000+ apps in mar-
kets. NotiLeak, an automatic analytical tool is also developed
to conduct the static analysis among these apps. Our results
indicate that three platforms provide ambiguous guidance of
KEY names, which indeed results in mistaken KEY storage
in 174 released apps. Besides, Pushbot platform is detected
to provide the vulnerable messaging API, leading to potential
risks of malicious notification tampering. Umeng and Mobpush
platforms with billions of app installations apply the insecure
HTTP protocol and adopt weak MD5 for verification, suffering
from insider attacks and their vulnerabilities are demonstrated
by our case study. For privacy concerns, we expose the
shocking fact that privacy policy compliance implementations
are either stagnated at the documentation stage (8 of 12
platforms) or never implemented in apps (less than 4% apps).
Moreover, 6705 apps (more than 41%), including some in-
fluential applications with more than millions of installations,
have stealthily collected users’ data, such as location, user in-
app behaviors, among others. Finally, our inspection results
exhibit that mobile notification monitoring behaviors exist in
245 apps and a case study is provided to validate that an
app can stealthily monitor all mobile notifications delivered to
other apps. Thus, these detected apps can potentially be used
for inferring users’ other private information. All these results
unveil the severe security and privacy issues accompanying
the blooming adoption of mobile notification services and they
should raise wider and closer attention to help improve and
regulate notification services. The contributions and signifi-
cance of this work are summarized as follows:

• We are the first to dissect the structural elements and im-
plementation process of the emerging mobile notification
ecosystem, which pave the way for future research along
this direction. We conduct the comprehensive analysis
to explore their potential security and privacy issues.

• We disclosed three vulnerabilities and potential attack
schemes related to their protocol designs and implemen-
tations in the notification enrollment and delivery stages.

• We proposed a three-level inspection method to examine
the privacy policy and their compliance, and a top-down

approach to reveal data collection behaviors in apps, for
comprehensively exposing the potential privacy issues
involved in mobile notifications apps.

• A large-scale empirical study over 12 notification plat-
forms and 30,000+ applications in the market is con-
ducted. The security issues on these platforms and the
privacy exposure behaviors on involved apps are reported,
revealing the potential risks to massive users.

According to our comprehensive and systematic exploration,
we have the following novel and critical findings.

• First, we reveal the neglected fact that the mobile notifica-
tion pushing is implemented by the third-party platforms
rather than the app developers themselves, which results
in serious security and privacy concerns.

• Second, users are prone to have the wrong perception
that their data are used by apps but neglect the privacy
exposure that the notification platform can collect the
users’ data. Unfortunately, the practical privacy policy
compliance of these notification platforms is quite subpar,
and users are rarely informed of and aware of such data
collection practices.

• Third, regarding the most concerned location informa-
tion exposure, we discovered a new side channel, i.e.,
geofencing-triggered notification, which can be adopted
to track a user’s location even if the location permission
is not granted to apps.

• Fourth, the Android system’s notification permission
mechanism has an unexpected flaw: different apps will
share the notification bar, enabling a malicious app to
acquire the listening permission and masquerade as a
normal app to secretly monitor other apps’ notification
messages. Such a privacy breach can lead to the inference
of users’ sensitive data.

The remainder of this paper is organized as follows. In
Section II, we dissect the mobile notification ecosystem to
reveal the flow of its messaging and configuration protocols.
In Section III, we conduct the security analysis of notification
protocol design and implementation. Section IV illustrates
the privacy exposure of mobile notification and the privacy
inference issues for notification monitoring. In Section V, we
conduct the large-scale empirical studies to investigate the
existing notification platforms and released apps. Section VI
outlines the related work, Section VII discuss the limitations,
and Section VIII concludes this paper.

II. MOBILE PUSH NOTIFICATION ECOSYSTEM

Intuitively, users may misconceive that the received no-
tifications are directly sent by application servers, however,
notifications in fact come from third-party agents who serve
for providing the notification delivery services. Such agents
are called the third-party Notification Platforms in this paper,
which provides the notification SDKs to be carried into
applications for implementing the functionality of creating
channels between a user device and a notification platform,
enabling the platform to distribute notification messages to

Application
Server

Host Notification
Platform

Transit Notification
Platform

1

2

Notification
Platform

SDK

1

2 2

SDK User
Device

Notification
Message

KEY App ID

Messaging
API

API KEY App ID

Messaging
API

App ID

1
KEY

1
KEY

11

22

App Server

Message
Messaging

API

Transit
Platform

Host
Platform 1

2

Transit
SDK

KEY App ID

KEY App ID11

22

App Server

Message
Messaging

API Host
Platform

1

KEY App ID

Host
SDK

Fig. 1. The dual-platform structure.

target devices. This section dissects the system design of
mobile notification systems for gaining a clear understanding
of their ecosystem. After investigating the 12 most popular
mobile notification platforms, the common structure of this
ecosystem is to be introduced, its main design components are
to be illustrated, and its delivery flows for notification pushing
are to be presented, which will serve as the basis to analyze
the security vulnerabilities and privacy issues, to be exposed
in Sections III and IV, respectively.

A. System Structure

Through extensive empirical studies on the 12 notifica-
tion platforms, we have identified the typical structure of
notification platforms. We call it the dual-platform structure,
which includes both a host notification platform and a transit
notification platform, tightly integrated as shown in Fig. 1. The
former one is responsible for processing the notification tasks
from different app servers and transporting the notification
to the latter one. The latter one is responsible for notifica-
tion delivery to the user devices, which is a system-level
notification provider for providing a stable communication
channel. The advantage of such a decoupling design is to
help lift the notification delivery rate. Note that, the system-
level notification platforms can design the transit notification
platform by themselves (e.g., FCM from Google).

B. Mobile Notification Mechanism

Through analyzing user documents and application demos
from various notification platforms, and personally carrying
out the app development, we conclude the procedure of devel-
oping an app with mobile notification function into four stages:
1) enrollment and key distribution; 2) SDK configuration;
3) device identification; and 4) notification pushing through
messaging API. Details of four stages are elaborated below.

1) Platform Enrollment and KEY Distribution: The enroll-
ment process starts from the platform enrollment. Developing
mobile apps with the mobile notification service shall take
into account two important issues: 1) the platform needs to
know who makes the notification API calls and 2) who is
the destined application for notification messages that are sent
to the messaging API. Hence, two important parameters are
offered by notification platforms, i.e., the messaging API key
and the AppId, in regard to the two issues. The former one is
used for the authentication purpose, which is uniformly called
as KEY in the rest of this paper. When an application server
calls the messaging API for sending a notification, this KEY

will be used for examining its identity. The AppId serves as
the app identification and should be hard-coded in application
source codes, to enable notification messages to be delivered
to the corresponding target application on a device.

In practice, the enrollment process includes two steps. First,
the app developer registers his applications on the transit
notification platform to obtain a pair of KEY and AppId.
Second, the developer registers the app on the host notification
platform and fills in the KEY and AppId derived from the
transit platform. After validation, a new pair of KEY and
AppId will be generated and assigned to the developer at the
account console. Then, the new KEY and AppId pair will be
adopted by the app server to send the notification task and the
host platform will use the original KEY and AppId to let the
transit platform deliver the message.

2) Notification SDK Configuration: Next, the developer
imports the notification SDKs to the developed app. Mean-
while, AppId is appended in the AndroidManifest.xml
file or in the notification initialization function. For ex-
ample, in the application with OneSignal SDK, we set
the AppId in the initial function named as: “OneSig-
nal.setAppId(ONESIGNAL APP ID)”. Both host and transit
notification SDKs are imported accompanying their AppIds.

3) Device Tracking: AppId can only identify the applica-
tion but unable to pinpoint the target user device. Hence, two
methods are suggested by notification platforms. The first one
is to track a device by the DeviceId, which is generated by the
SDK to mark the device installing the application. Developers
need to call the DeviceId generator at the initialization function
of the main activity. When the app is running, the DeviceId
will be generated and transmitted to both the notification
platform and the application server. The second method comes
from the user tag. That is, devices can be marked with
different tags (e.g., male/female, user interest, etc.), set up by
developers. Developers can call the tag generator at any code
position while defining a tag value. When the tag generator’s
code section is triggered by a user’s action, the tag will be
generated and transmitted to the notification platform and
application server. Notably, these DeviceId and user tags are
generated for supporting normal messaging behaviors. So, the
behaviors of uploading their parameters are not considered as
the sensitive /privacy data exposure.

4) Notification Pushing through APIs: With the three afore-
mentioned steps, an app with the notifications function is
developed. Then, the application server can adopt the no-
tification messaging API provided by the platform to send
messages or collect user data. Here, we only present the
normal procedure of notification pushing but leave the analysis
of stealthy data collection behaviors and privacy issues in
Section IV. According to our empirical study towards popular
notification platforms, the messaging APIs are all in the form
of RESTful API, where an application server only needs to
deliver the authentication information, i.e., KEY and AppId,
as well as message payloads to the specified URL address.
The notification message is in the JSON format, including the
target devices information indicated by the DeviceId, user

Data Collection
Claim

Confirmation
Callback APIs

Policy Display
APIs

 Code Analysis

 Docs Analysis

Notification SDK Identification

API Searching

Calling Time Checking

Confirmation
Parameter Tracking

Privacy Policy
Display

Privacy Policy-
only

 User Confirmation
Required

Security Analysis
Stealthy Data

Collection

Notification
Verification

Messaging
APIs

Key
Configuration

Notification
Verification

Messaging
APIs

Key
Configuration

Exposure
Findings

Detection
Methods

Privacy Policy
Compliance

Exposure
Findings

Detection
Methods

Privacy Policy
Compliance

 Inference
Schemes

Notification
Monitoring

Privacy Inference

12 Platforms
Inspections 20000+ Apps Detections

Attack cases

Empirical Study

Exploration Scope

Analysis Proposal

Security Analysis
Stealthy Data

Collection

Notification
Verification

App
Authentication

Key
Configuration

Exposure
Findings

Detection
Methods

Privacy Policy
Compliance

Notification
Monitoring

12 Platforms
Inspections 30000+ Apps Detections

Attack cases

Empirical Study

Exploration Scope

Analysis Proposal

Privacy
Inference

Notification
Permission

Privacy
Inference

Notification
Permission

Security Analysis
Stealthy Data

Collection

Notification
Verification

App
Authentication

Key
Configuration

Exposure
Findings

Detection
Methods

Privacy Policy
Compliance

Notification
Monitoring

12 Platforms
Inspections 30000+ Apps Detections

Attack cases

Empirical Study

Exploration Scope

Analysis Proposal

Privacy
Inference

Notification
Permission

Fig. 2. The overview of our security and privacy area explorations.

tags group, and other control options. Taking OneSignal plat-
form as an example, the notification message payload should
be pushed to “https://oneSignal.com/api/v1/notifications”, then
the platform will make use of the channel established upon the
SDK carried in the device for delivering notifications.

In practice, the messages will be first sent via the messaging
API to the host platform. After re-organizing these messages
to meet a certain format, the host platform calls the messaging
API for sending them to the transit platform, who will then
deliver messages to the user device, as shown in Fig. 1.

C. Sketch of Our Analysis

After dissecting the mobile notification ecosystem, we will
conduct a comprehensive analysis for potential security and
privacy issues in Sections III and IV, respectively. Since the
transit platforms in the dual-platform structure are the system-
level platform, such as FCM from Google, which is considered
as a trustful service provider, its security and privacy issues
are not in the scope of this paper. We only focus on the
host platforms in the dual-platform structure. As shown in
Fig. 2, our analysis can be summarized as follows. For the
security analysis, we target three key procedures, i.e., KEY
configuration, application authentication, and notification ver-
ification, while providing the corresponding attack schemes.
For privacy exposure, stealthy data collection behaviors are
firstly explored from the privacy policy compliance analysis,
data collection detection, to our findings of privacy exposure.
Then, we discuss the potential privacy inference problem
through notification monitoring.

III. SECURITY ANALYSIS

The notification platforms possess strong delivery abilities
and can quickly spread messages to a tremendous amount of
mobile devices, incurring potential risks by providing channels
for malicious entities to publicly propagate messages to the
society. Any potential security issue may lead to the severe
social impacts and consequences, if an attacker (e.g., terrorist
or rumor spreader) hijacks the notification channels. To this
end, this section conducts the security analysis to illustrate the
vulnerability concealed in such mobile notification services.

A. Security Analysis of KEY Configuration

Our security analysis starts from the KEY configuration,
which is used for authentication purpose in the messaging
API. Ideally, this KEY should be well-stored at the server end

only. But, per our empirical studies, we capture the clue with
respect to the mistakes frequently made by app developers in
this step. Notably, in Section II-B1, we have differentiated
two important parameters as KEY and AppId. However,
some platforms just define both parameters as the KEY with
different prefixes. For example, in Kumulos, AppId is defined
as “API KEY” while the KEY is defined as “SECRET KEY”,
which can easily cause confusion in the practical development,
resulting in both of them being hard-coded into apps.
Detection Methods. To detect the misconfiguration of KEY,
we can conduct the inspection towards KEY and AppId
naming rules in the developer guidance. Also, we will examine
the KEY misuse in the released apps. We extract the potential
strings that match the format and length of KEY or AppId
in the SDK configuration position of app reverse-engineered
source codes. To avoid ethical issues and impacts to apps’
notification services, we design a special verification method
to check whether the extracted strings are KEY or not.
Specifically, we observe that the notification platform offers
the messaging API to deliver notification to the individual
device by providing the DeviceId, and returns different error
codes corresponding to device unfound or incorrect KEY.
Hence, we call these messaging APIs with the extracted strings
as KEY and the null string as the DeviceId. As such, we never
deliver notification messages to users but still can receive error
codes. By checking them, we can verify whether the extracted
string is KEY. Our results will be presented in Section V-C1.
Potential Attack. An attacker can steal the KEY wrongly
stored in the application code, and acts as an application server
to push his malicious messages to the victim’s devices. He can
massively crawl the released apps from the application store
to search for the potential KEY. These KEYs can be found
in the specified field, such as the “AndroidManifest.xml” file
and notification initial call functions, while the KEYs strings
are of the fixed format. Thus, they can be easily identified by
an attacker. Once the KEY is located, the attacker can call
the corresponding notification API and broadcast malicious
messages to all user devices installing the app.

B. Security Analysis of Application Authentication

As we have discussed in Section II-B3, the notification
platform relies on the AppId to identify the application, so
an application server can send his KEY and the corresponding
AppId to the messaging API for requesting to send notification
messages. However, if the notification platform lacks the
additional authentication mechanism to validate the application
server’s identity, any attacker once obtaining the key can send
messages to the target app. That is, an attacker can hijack
application channels to act as an application server to deliver
his notification messages to more user devices.
Detection Methods. To conduct the application authentica-
tion examination, we register two applications on the same
notification platform and obtain the KEY and AppId for each
application. When calling the messaging API with the KEY
for the first app and the AppId for the second app, we examine
whether the second app can receive the notification message.

If yes, we can claim that this notification platform lacks the
secure application authentication.
Attack Scheme. The AppId has to be hard-coded in the
released application to construct the network channel. Hence,
an attacker can reverse-engineer the application files to search
for the AppId. Besides, the attacker can also get the employed
notification platform by identifying the keywords of notifi-
cation SDK carried in the app. After that, the attacker can
register an account on this platform and create his application
on the corresponding platform to gain a legitimate identity for
the KEY. When calling the notification messaging APIs, the
attacker can append his KEY and the AppId obtained in the
victim application and then deliver his message to the users
of victim application by hijacking its channel.

C. Security Analysis of Message Generation and Verification

We next analyze the message generation and verification,
aiming to raise the serious concern for mobile notification
protocol design. Based on our observation, some notification
platforms have realized the security risk of HTTP-based API
and then designed MD5 signature-based methods in the mes-
sage generation process, to promote the authentication and
message examination. However, MD5 has been demonstrated
to be a weak method in [22], [54], [30], [14], regarding which
the chosen-prefix collision attacks were proposed in [51], [50],
[53], [52], enabling an attacker to change the prefix of input
but still generate the same MD5 output.

Realizing the security issues that lurk in the message
generation and verification process with the MD5 signature,
we propose an insider attack. Notably, in the insider threat
model, an internal attacker cannot directly send the malicious
notifications with API KEY since the application servers can
discover and block them. That is, he cannot access the KEY
but is only responsible for the design of and distributing the
notification contents. However, he can still bypass the veri-
fication mechanism to distribute the malicious message. We
expose such an insider threat because the mobile notification
possesses wide social impacts, if succeeded, an attacker can
quickly broadcast malicious messages to the great public.

Before presenting our attack, we will first illustrate the
process of MD5-based message authentication in some mo-
bile notification systems. In which, the application server
is required to calculate an MD5 signature for the notifi-
cation payloads in the HTTP request combined with his
KEY such as: MD5{Payloads||KEY }, where || repre-
sents the string concatenation. When calling the messaging
API, this signature is appended in the URL as follows:
http://msg.xxxx.com/api/send?signature. After receiving the
network packet, the notification platform will calculate the
signature in the same format. Notably, based on the AppId in
the received payloads, the platform can recognize the applica-
tion and choose the corresponding KEY. If the two signatures
collide, this notification message passes the authentication.
Detection Methods. We can inspect the message content ver-
ification mechanism, especially the MD5-based examination,
adopted by these messaging APIs.

Attack Scheme. Here, an insider attacker aims to maliciously
distribute notification without being detected by the notifica-
tion platform. She can first generate two pieces of notification
messages, one is a normal message (e.g., a general weather
forecast) and the other is a malicious content (e.g., a designed
rumor). The approach proposed in [52] can be employed to
create the MD5 collision by generating two different suffixes
corresponding to the two notification messages. To eliminate
the JSON parse mistake, we can place the generated data
blocks into the optional field. Furthermore, for MD5, if String1
and String2 collide, then appending the same string before or
after String1 and String2 would also collide. Hence, the two
different notification messages can result in the same MD5
signature when appending the KEY. Note that, the notification
payloads are delivered through JSON format and some charac-
ters, such as “ {} []”, are keywords, so the generated suffixes
that contain these characters can cause the parsing problem. In
the practical experiment, we will calculate multiple collision
cases to avoid this situation. The insider attacker will send nor-
mal notification messages to the application server for MD5-
based signature authentication. After that, he substitutes the
payload with the prepared malicious rumor before delivering
the signed packet to messaging API. This malicious message
can pass the authentication at the notification platform for
delivering. A case study to demonstrate the feasibility of such
an attacker is exploited in Section V-C4.

IV. PRIVACY EXPOSURE ANALYSIS

We next turn our attention to the privacy leakage issues
resulting from mobile notification services. Per our empirical
study, we discover an unexpected circumstance: users’ private
data are stealthily collected and displayed on the account con-
sole of the notification platform. Such a discovery motivates
us to examine user data exposure issues from notification
SDKs mounted in apps. Besides, we also find that an app can
access the messages shown on the notification bar sent from
other apps. Such shared access to the notification bar on the
Android system may incur an unexpected privacy inference
risk. As such, this section focuses on two aspects, i.e., the
data collection behaviors of notification SDKs and the privacy
inference from mobile notification monitoring.

A. Stealthy Data Collection

The first privacy issue comes from the user data collection,
whereas users’ private or sensitive data are uploaded to notifi-
cation platforms rather than to the application server without
users’ awareness. We detail our threat model and then expose
the privacy issues regarding data collection behaviors.

1) Threat Model for Mobile Notification: We first clarify
our user data exposure threat model, which is defined as:
User and device’s data accessed by or created in the host
applications are uploaded through notification SDK to the
notification platform, without users’ agreement or awareness.

The notification SDK mounted in an app is invisible to
users when the host app is installed on the device and applied
for required permissions. The permission control mechanism

will treat it as a part of the app to inherit its permission.
Once a user installs such an app and grants permissions to
it, he misunderstands that his data will be utilized by the app
server rather than being uploaded to the third-party notification
platform. As such, we treat such sensitive data uploading to
the notification platforms as privacy exposure and the data
transmission to the app server as normal behavior.

2) Privacy Policy Analysis: We have realized the condition
that the privacy policies of notification SDKs may state that
notification servers will collect the data, so we first conduct
the privacy policy compliance analysis to explore whether the
app users are correctly informed and know that their data is
collected by notification servers. Three questions guide our
analysis: 1) whether mobile notification platforms provide the
privacy policy to the public claiming their data collection
behaviors? 2) whether they offer mechanisms for checking the
user agreement? and 3) whether the user is informed?

Different countries/regions have proposed strict regulations
to guide data collection behaviors [3], [5], [6]. Hence, mobile
notification providers have noticed the potential privacy dis-
pute derived from the data collection and provided privacy
policies for compliance. These privacy policies should be
displayed to users and seek for granting permission when
an app is installed or operated for the first time. However,
such important processes are usually missing. To uncover
the privacy policy issues, we design three levels of detection
guidelines for various practical compliance implementations.

1 Privacy Policy-only. Some notification platforms provide
a privacy policy containing announcements of data collec-
tion behaviors and asking for developers to display them
to users for granting agreement. However, no enforcement
is put to developers and no mechanism is provided
to verify users’ acknowledgments. As a result, such a
privacy policy is more like a disclaimer, failing to bring
users’ particular attention to the privacy exposure risks.

2 User Confirmation Required. Beyond providing the pri-
vacy policy, some platforms require feedback from
the app when a user confirms to understand the
data collection behavior. For example, Mobpush plat-
form asks the developer to add a confirmation
function “submitPolicyGrantResult(boolean isGranted,
com.mob.OperationCallback callback)” before initializ-
ing notification services. Only if the “isGranted” param-
eter is true, the SDK can provide the notification-related
service and enable the data collection. However, this
can be forged by a developer by setting the respective
parameter to be true regardless of users’ behaviors.

3 Privacy Policy Display. Some notification platforms also
require the carrying app to display the privacy policy to
users for authorization. For example, the Umeng Platform
demands the developer to add a function “UMConfig-
ure.preInit()” before initializing the notification service,
to let the privacy policy display on apps and require
users’ agreement. However, the use of these functions is
not enforced, resulting in the service still being provided

even if such a function is not called in the code.
Pessimistically, if a user accepts the privacy policy and

terms of use in default without carefully checking them,
his private data can be stealthily collected. With the three
aforementioned guidelines, we present our detection solutions.
Phase 1: Documents Analysis. We first conduct the documen-
tation analysis on the privacy policies provided by notification
platforms and classify them based on the aforementioned three
aspects, i.e., data collection claims, user confirmation callback
APIs, and policy display APIs. Considering only 12 most
popular notification platforms, this documentation analysis is
conducted manually by searching the API keyword matching.
Phase 2: Source Code Static Analysis. Regarding the plat-
forms that provide APIs for privacy compliance, we design
a 3-step detection approach to conduct the static analysis on
released apps. We first check the existence of privacy policy
APIs and then compare the calling time of these APIs and
notification initial functions. Finally, for the user confirmation
callback APIs, we track the uploaded parameter by checking
if it is hard-coded with a true value.

• Step 1 – Policy APIs Searching. We search the cor-
responding policy-related APIs, such as “UMConfig-
ure.preInit()”, in source codes to filter out the applications
that do not inject the demand APIs.
Step 2 – Calling Time Checking. According to the de-
velopment guidance, these APIs should be called before
initializing notification services, so we next locate the
initial function of notification services. After that, we gen-
erate the calling graph of apps and conduct topological
sorting for comparing the calling order of policy APIs
and notification services APIs. If the latter one is in front
of the former one, the app will be reported.

• Step 3 – Confirmation Parameter Tracking. For the
user confirmation callback APIs, we use taint analysis
to track the uploaded parameters. For example, when
checking the API of “submitPolicyGrantResult(boolean
isGranted)”, we track the definition and assignment flow
of “isGranted”, which should be assigned based on the
user input. If the confirmation parameter is hard-coded
as the true value, the app will be reported.

Notably, our efforts undertaken on the privacy policy anal-
ysis and the compliance implementation detection go beyond
the previous studies on third-party SDKs exploration, which
only target the common and sensitive system-level APIs. Our
inspection of privacy policy-related APIs, including the calling
time and important parameter tracking, can promote the third-
party SDK analysis to a more practical level by taking into
account real-world applications.

3) Discovering Data Collection Behaviors: While Sec-
tion IV-A2 focuses on the privacy policy compliance, this
section will further explore if the stealthy data collection
behaviors indeed exist in notification SDKs. Our analysis in-
cludes three steps, depicted as follows. Notably, we contribute
two new sensitive data sources, i.e., the developer-defined user
in-app action and geofencing event, in the taint analysis.

Phase 1: Documentation Analysis. We manually conduct the
analysis in this step. We focus on the notification SDK APIs
uploading user data, such as location, network connection
parameters, in-app actions, among others. These APIs will be
further leveraged to guide the taint analysis design.
Phase 2: Application Network Traffic Study. Next, we
develop the testing apps for network traffic analysis. We
follow the developer documents to integrate the notification
SDKs into our testing apps and initialize all functions. When
installing them on our smartphones, we capture the network
packets during the app installation and running. If necessary,
we also decrypt the TLS-protected context with a security cer-
tificate. Then, we examine packet payloads to check whether
our privacy data are carried. The privacy data we found in the
captured network packet will serve as the evidence for guiding
the static code analysis in the next phase. According to our
empirical study, the notification platform displays all data that
it collects from the user’s device on the user console. We log
into the account and switch to the console, for checking the
device installation state and examining if user’s data are indeed
uploaded to the notification platform.
Phase 3: Taint Analysis among Released Apps. Finally, we
conduct the taint analysis to examine if mobile notification
SDKs will upload sensitive data from the user device to the
notification platforms. Our key idea is to identify data flows
that originate from sensitive sources (e.g., location calls) and
end up in the suspect sinks (e.g., notification SDK uploading
APIs). Note that, only the data flow pointing to the notification
SDK uploading APIs will be considered as the sensitive data
flow. Once the sensitive data flow appears, private data upload-
ing through the notification SDK is identified. We develop a
detection framework based on the FlowDroid [10] to charac-
terize apps’ behaviors, but make the customized design to suit
the mobile notification-specific source and sink. In particular,
two new sources (i.e., the user in-app event definitions and the
Android geofencing events) are proposed, which have never
been considered in existing third-party libraries analyses.

Step 1 – Sensitive Source Configuration. Based on the An-
droid APIs presented in SUSI [44], we select the Android
system call that covers the majority of sensitive data in-
cluding locations, sensors data, etc. Besides, for the user
in-app actions, their sources should be the definition of
the functions. We locate this type of source according
to the event definition function in notification SDK, such
as Airship SDK event definition function: “ActionRunRe-
quest.createRequest().setValue(actionValue).run();” Consider-
ing that the location information can be uploaded through the
geofencing event, we add this event call as the source, e.g.,
“geofencingEvent = GeofencingEvent.fromIntent(intent)”. The
details of user in-app actions and genfencing functionalities
will be presented in Section IV-A4.

Step 2 – Uploading Sink Configuration. To improve the
efficiency and avoid false positive, we only target two types
of sensitive sinks, i.e., notification SDK data collection APIs
and Android network transmission functions. In addition, we

also consider the scenario that once the mobile notification
service is initialized in the host app, its SDK will automatically
trigger data uploading functions. For example, the app moving
from the foreground to the backend can trigger app usage
time tracking. So, we also mark all network transmission calls
in the notification SDK, including HTTP and TCP socket
connections, as the sinks. The existence of sensitive data
flow pointing to a network transmission call that stays in the
notification SDK will indicate a data uploading behavior.

4) Data Collection Findings: We next unveil some repre-
sentative data uploading behaviors. Note that the data collec-
tion behaviors exhibited here are discovered and verified in
the empirical study with our proposed detection schemes. We
bring these findings upfront to help readers better comprehend
the risk of privacy exposure. According to our exploration
among various mobile notification providers and the released
apps, the collected data can be categorized as follows.
Basic Device Information. We observe collecting such in-
formation is a common phenomenon in mobile notification
SDKs. In most platforms, device model, os version, network
connection state, and other device information are all automat-
ically uploaded when an app is initialized, leading to potential
privacy exposure. Such information is used by the platform
to conduct the application installation statistic analysis, device
tracking, and notification channel connection maintenance, but
they can be leveraged to infer users’ privacy information.
User In-app Actions. Some sensitive data collection behavior
comes from the user in-app action tracking, including the
app usage time, user clicks actions, purchasing, among others.
Action tracking can be achieved by three methods. First, the
general action tracking, such as app use time or interface
jumping, is automatically collected when the corresponding
event is triggered. Second, developers can call event tracking
APIs at specific action time points. For example, developers
can call the function “Leanplum.trackGooglePlayPurchase()”
in their in-app payment code section, to upload user’s pur-
chasing behaviors in Google Play. Third, some SDKs provide
APIs for developers to define special actions. For example,
“Kumulos.Current.TrackEvent(EventName)” allows the app to
track actions with the developer-defined event name.
Location Trace. Location is the most sensitive information
that is related to user’s routine. Unsurprisingly, mobile no-
tification SDKs are eager to collect them. Users grant the
app location permissions to allow it to fulfill the normal
functionalities, however, the notification SDK will collect the
location data to the notification platform, thereby causing
privacy exposure. Through our analysis, we summarize three
types of location collection, as follows.

1. Network State Location. Mobile notification SDKs can
track the location through IP or MAC address at the
coarse-level even users disable the location permission.

2. GPS-based Location. Location information can be up-
loaded by directly sending the geographic coordinates.
Once the host app applies the location permissions, the
notification SDK can access the geographic information
and upload them through the APIs. Most notification

SDKs possess the location uploading APIs, such as in
Kumulos: “Kumulos.SendLocationUpdate()”.

3. Geofencing. The notification SDK makes use of the
geofencing supported by Android to accomplish location-
aware message delivery. To create Android geofencing,
developers need to configure the latitude and longitude
as the circle center, and set the radius to define a circular
area. When the device enters or exits the area, the
geofencing service can automatically generate Android
events. This kind of location-aware event can be uti-
lized by the notification platform to perform location-
based notification messaging. That is, the developer first
configures the Android geofencing area in apps and
sets the same area at the notification console with the
corresponding message that needs to be delivered to the
device. Then, the developer calls the geofencing event
collection APIs supported by notification SDKs. Once
a user enters or exits this area, the Android geofencing
event will be uploaded to the notification platform and
triggers the message delivery. Although the geographic
coordinates are not uploaded, the location information
that a user arrives at an area can still be collected by
mobile notification platforms.

B. Notification Monitoring

We next explore the notification monitoring behaviors,
which may be leveraged to infer users’ other private informa-
tion. Since notification messages may carry sensitive contents
or special events reminders, by monitoring and capturing them
through malicious apps, an attacker can infer users’ sensitive
information, leading to serious privacy exposure. Note that,
such monitoring is not the behavior of notification SDKs or
the apps that push this notification message. It is executed
by the malicious app that is developed by an attacker, which
pretends to perform normal behaviors while stealthy sniffing
the notifications from other apps. This threat raises a new side-
channel attack method for inferring user privacy.

1) Android Notification Permission Flaw: The Android
permission mechanism protects notification contents with the
“BIND NOTIFICATION LISTENER SERVICE”. Apps typ-
ically require applying for this permission and waiting for
the user granting. If a user grants this permission to the
app, the notification listener function in the app can listen
to the respective notification events and obtain the notification
messages shown on the notification bar. However, the design
flaw of this mechanism is that the notification bar is not
isolated app by app, thus any app with this permission can
access all messages in this bar. In other words, notification
listeners in different apps can access all messages on the
notification bar even if the messages are from other apps.
Such shared access to the notification bar can cause the
risk of side-channel attacks which allow a malicious app to
monitor the notification messages for user privacy inference.
In practice, the malicious app can pretend to be a normal
one and perform its normal behavior, such as listening to
the notification for automatically receiving verification codes.

This can induce the user to grant the corresponding permission
for monitoring notifications. But, it can stealthily monitor the
sensitive message from other apps for privacy inference.

2) Potential Privacy Inference through Notification: We
further discuss the possibility of privacy inference, if notifi-
cation messages are monitored by apps.

1. Financial Status Monitoring. Mobile financial apps,
such as PayPal, Alipay, Amex, etc., often deliver some
notifications containing a user’s financial information,
such as “received money transfer xxx$”. By monitoring
such financial mobile notifications, a malicious app can
acquire a user’s rough financial status description.

2. Location Tracking. As discussed in Section IV-A4, apps
can perform location-based notification delivery with An-
droid geofencing. Such location-aware notification mes-
sages can be used by other apps for location tracking.

3. User Portrait. Plenty of apps are supported by recom-
mendation systems to learn users’ interests and then pro-
vide personalized notifications to direct users to click on
their apps. Intuitively, the set of user mobile notification
messages can be used to learn the user Portrait.

Hence, the mobile notification messages contain plentiful in-
formation to be utilized by attackers for inferring user privacy
with inference methods proposed in [38], [48], [28], [59], [33].
We will provide the statistic data for released apps requiring
the notification listening permissions in Section V-D4.

V. EMPIRICAL STUDY

We conduct extensive empirical studies from different per-
spectives, i.e., documents analysis, apps collection and anal-
ysis, case studies, etc., to examine the mobile notification
systems, aiming to expose the potential security and privacy
issues that have been presented in Sections III and IV. Our goal
is twofold. First, we reveal vulnerabilities lurking in mobile
notification services. Second, we expose the privacy issues
from notification SDKs and released apps in the market. Some
case studies are also conducted.

A. Notification Platforms and Apps Collection

We collect mobile notification platforms primarily via In-
ternet crawling with keywords, such as “Mobile Notification”,
“Mobile Pushing”, “Cloud Messaging”, and many other re-
lated descriptions. In addition, we parse blogs and statistic
news with the topics of mobile notifications, such as [42],
to refine and enlarge platform collections. In total, 12 most
popular mobile notification platforms are identified, covering
the majority of mobile notification markets in Europe, North-
America, and Asian areas. We collect all versions of notifica-
tion SDKs, user documents, and application demos of these
platforms for analysis. For the released apps, we collect the
top-100 apps in each category in app stores, such as Google
Play, CoolApk, and APKpure, etc, obtaining a total of 31049
apps. Our crawling starts from December 2019 to February
2020 and from August 2021 to September 2021.

We conduct a large-scale analysis of our collected 31049
apps and find that over half of the Internet-required apps, i.e.,

TABLE I
THE LIST OF COLLECTED 15 NOTIFICATION PLATFORMS

Notification Platforms Homepage Website

Airship https://www.airship.com/
Getui https://www.getui.com/
Jpush https://www.jiguang.cn/

Kumulos https://www.kumulos.com/
Leanplum https://www.leanplum.com/
Mobpush https://www.mob.com/
OneSignal https://onesignal.com/
Pushbot https://pushbots.com/
Pusher https://pusher.com/

Pushwoosh https://www.pushwoosh.com/
Taplytics https://taplytics.com/
Umeng https://www.umeng.com/

TABLE II
INSTALLATION STATISTICS OF COLLECTED APPS CORRESPONDING TO 12

MOBILE NOTIFICATION PLATFORMS

Notification Platforms App Amounts Installation Amounts

Airship 1705 291,000,000+
Getui 2279 510,000,000+
Jpush 1564 520,000,000+
Kumulos 1417 427,000,000+
Leanplum 471 680,000,000+
Mobpush 1985 1,170,000,000+
OneSignal 1687 870,000,000+
Pushbot 231 1,100,000+
Pusher 126 2,500,000+
Pushwoosh 307 150,000,000+
Taplytics 482 70,000,000+
Umeng 4015 920,000,000+

16269 of 31049, have adopted third-party notification SDKs to
fulfill their notification services, having billions of installation
amounts. The names of notification platforms, app amounts,
and the installation amounts are summarized in Table II.

B. Static Analysis in Collected Apps

We develop an automatic analytical tool, NotiLeak, to auto-
matically analyze the apps for exposing security and privacy
issues. The workflow of NotiLeak is detailed below:
Phase 1: Notification SDK Identification: NotiLeak de-
compiles the collected Android application APK files into
the analyzable intermediate code and generates the usable
code resources. It integrates the classical app analysis tool
Apktool [7] to extract resource files from the APK file.
NotiLeak adopts a three-step identification framework to fulfill
the time efficiency requirement of our large-scale analysis.
Details are shown as follows:
Step 1: Permission-based Filtering. This step aims
to filter the required permissions for receiving the
notification messages. Two types of permissions are
considered, i.e., “android.permission.INTERNET” and
“OP POST NOTIFICATION”, one serves for the
network connection and the other helps enable the
notification function, respectively. The permission
“android.permission.INTERNET” can be directly
checked from the AndroidManifest.xml file while the
“OP POST NOTIFICATION” is dynamically configured at
the application runtime, demanding our searching of resources
code. Only the applications that enable both permissions will
be analyzed.

Step 2: SDK Identifier Matching. This step aims at the fast
notification SDK identifier matching. Since the number of
notification platform SDKs studied in this paper is deter-
mined, it is feasible to obtain certain keywords and static
features in the notification library SDK. These SDK identifiers
are the combination of provider’s names and the important
initialization calls. As such, we create a list of identifiers
based on platform SDK collections to support fast matching.
After this step, NotiLeak could find out most of the desirable
applications, while the applications that cannot match any
identifier will be sent to step 3.

Step 3: Structure-based Identification. In practice, app de-
velopers conventionally use obfuscation tools (e.g., Pro-
Guard [27], DexProtector[2], and DexGuard [1]) to prevent
reverse engineering. There are currently two common ob-
fuscation strategies, namely deadcode removal and identi-
fier renaming. The deadcode removal is to remove unused
functions in the SDK which are prone to expose the SDK
packages characteristics. The identifier renaming strategy may
obfuscate package/class/method/variable names to meaning-
less characters. However, the hierarchical structure of the
classes, inherent Android system APIs, class inheritance rela-
tionship, and vital function call graph remains invariant under
two kinds of obfuscation strategies. NotiLeak adopts such
architectural characteristics to detect the SDK. According to
collected SDKs, NotiLeak builds their architectural signatures
and conducts a fine-grained searching among the applications
to detect the apps that contain obfuscated SDKs. In practice,
we have conducted a small scale of testing on 36 apps
developed by ourselves (i.e., 3 apps for each platform with
different obfuscation methods) to demonstrate that NotiLeak
can recognize all notification SDKs.

Phase 2: KEY Misuses Analysis: The NotiLeak conducts the
KEY misuses analysis based on the methods we have provided
in Section III-A. Recall that, it will extract the suspect strings
in the app source codes and automatically send the crafted
message to the notification messaging APIs. By examining
the returned error code, it can identify the misuse of KEY.

Phase 3: Privacy Policy Analysis: The NotiLeak performs
privacy policy analysis based on the source code analysis
methods we have provided in Section IV-A2. All analysis
results corresponding to each app will be recorded for further
statistic analysis.

Phase 4: Data Collection Analysis: Following the taint analy-
sis methods we have provided in Section IV-A3, NotiLeak will
extract the sensitive data flow in apps. These data flows will
be classified into different types, such as user in-app actions
and location traces, recorded for statistic analysis.

Phase 5: Notification Monitoring Analysis: In the end,
Notileak conducts notification monitoring inspections by fil-
tering out the apps that apply for the notification listening
permission. All the detected apps will be marked as the suspect
app for further analysis.

C. Security Inspection Results

With the resources including user documents, application
demos, and our testing apps, from 12 notification platforms,
we examine their mobile notification services following our
proposed security analysis in Section III. Six notification plat-
forms are discovered to have vulnerable notification services,
impacting around billions of users with security risks. We have
informed these platforms about our findings for the purpose
of ethical disclosure. Detailed results are illustrated as below.

1) KEY and AppId Misuse: We examine the KEY and
APPId names as well as their storage guideline among these
12 platforms. Three platforms, i.e., Airship, Taplytics, and
Kumulos, are found to name both parameters as KEY with
different prefixes, prone to lead confusion to developers. Then,
we conduct the KEY inspection among released apps in order
to detect the mistaken KEY storage. Our results indicate that
app developers store the KEY for messaging API in 174 apps
with more than 500,000+ installations. We verify our findings
by using our approach proposed in Section III-A, where the
messaging API returns the error code “device not found” rather
than “KEY incorrect”. Note that, the attacker with these keys
can send the mal-notifications to real users. Among 174 apps,
88 apps adopt the Kumulos, 63 apps adopt the Airship, and
23 apps adopt the Taplytics. This observation demonstrates
that the similar names between KEY and APPId, can cause
serious security issues. We have contacted the three platforms
and suggested them to distinguish the two names.

2) Application Authentication Inspection: We inspect the
application authentication mechanism of all platforms. For
ethical considerations, we perform our proposed attack (i.e.,
Section III-B) on two applications developed by ourselves
corresponding to each platform. Our results exhibit that all
12 notification platforms are free from this security issue.

3) Notification Messaging API Analysis: To discover the
insecure notification messaging APIs, our analysis follows two
criteria: 1) whether the RESTful API is protected by HTTPS?
and 2) whether a strong authentication is adopted?

We discover that three platforms adopt insecure messaging
APIs with HTTP. That is, Pushbot and Mobpush only provide
the HTTP URL while Umeng provides both HTTP and HTTPS
URLs for better compatibility. In particular, the Pushbot plat-
form, which is employed by 231 apps with 1,100,000+ instal-
lations, only adopts the basic HTTP authentication method,
resulting in the unprotected plaintext transmission of KEY.
There is also no notification message verification mechanism
to check the integrity of payloads. Consequently, an attacker
can perform the man-in-the-middle attack to steal the KEY or
tamper the notification messages.

Umeng and Mobpush provide the HTTP URL messaging
API and then employ MD5-based message verification to
protect the notification from tampering. But, their methods
cannot prevent the insider threat as proposed in Section III-C,
whereas an attacker can modify the notification payloads
without changing the MD5 signature. Notably, the Mobpush
is employed by 1985 apps, which can cause severe security
risks to its involved billions of installations.

Airs
hip

Getu
i

Jp
us

h

Kum
ulo

s

Le
an

plu
m

Mob
pu

sh

One
sig

na
l

Pus
hb

ot

Pus
he

r

Pus
hw

oo
sh

Tap
lyt

ics

Umen
g

User Confirmation
Requird

Privacy Policy Only

Privacy Policy
Display

The notification platform
provides data deletion API

The Privacy policy compliance
level of notification platform

Fig. 3. Privacy policy compliance levels among 12 notification platforms.

4) Insider Attack Case Study: We conduct a case study to
perform the insider attack towards Umeng messaging API, val-
idating that the MD5 collision-based insider attack is practical
in real-world notification systems. For ethical considerations,
we only conduct the attack on the app that was developed
by ourselves. That is, we develop a testing app that carries
the Umeng notification SDK. Then, we generate a notification
message with the weather forecast as the target and design an
adversary notification message with the advertising content.
The open resource MD5 collision attack on Github [49] is
employed to calculate the chosen-prefix MD5 collision blocks,
for the weather forecast and advertisement contents. The calcu-
lation was processed on a computer with CPU: Intel i7-8700k,
GPU: NVIDIA GeForce GTX1080 Ti, and RAM: 64G, where
the GPU acceleration was employed. It takes 4 days to find
a collision with the two prefixes while the generated collision
blocks do not include the JSON keywords. We put collision
blocks in the optional field, i.e., “extra:”, and the collided MD5
value is “9b4af15c5b932858f26cb22f3420a86c”. We start to
push the notification message with weather forecast payloads
to the messaging API. Then, the insider attacker replaces
the payloads with colliding advertising payloads and delivers
them to the messaging API. The testing user device receives
the pushed notification with the modified content. The two
collision files in this attack are exhibited in [4] with the file
names of “prefix.txt.coll” and “prefix2.txt.coll”.

D. Privacy Exposure Analysis
Next, we focus on privacy exposure for apps carrying

notification SDKs and aim to answer the following questions:
1) whether users are informed about the privacy policy of no-
tification services? 2) whether these notification SDKs upload
users’ data to their platforms? and 3) how much user data is
leaked to the notification platforms? Our explorations of sen-
sitive data exposure shall raise important concerns regarding
privacy protection and mobile notification supervision.

1) Privacy Policies Study: We first analyze the privacy
policy compliance levels and their implementations, aiming
to expose whether the notification platforms comply with
data collection regulations and whether users are informed in
practical development.

According to our document analysis, the privacy policy
compliance levels among these 12 mobile platforms are shown
in Fig. 3. We can observe that 8 of 12 platforms only provide
the privacy policy on their websites, claiming that their SDKs
will collect user data. Among these 8 platforms, Airship and
Leanplum provide the data deletion APIs to app developers for

TABLE III
STATISTICS OF APIS RELATED TO PRIVACY POLICIES IMPLEMENTATION

Platforms App Amounts Percentage

Mobpush 114 5.74%
OneSignal 121 7.17%
Pushwoosh 54 17.59%

Umeng 26 0.65%

Total 318 3.98%

erasing the user data collected by their SDKs. On the other
hand, only 1/3 of platforms provide the privacy policy APIs,
where 2 platforms, i.e., OneSignal and Mobpush, provide APIs
for acquiring user agreement parameters, and 2 platforms, i.e.,
Pushwoosh and Umeng, design UIs and APIs for displaying
their privacy policy to users.

We inspect the released apps that are employing the four
platforms (OneSignal, Mobpush, Pushwoosh, and Umeng) and
verify if their respective APIs are indeed implemented in the
development. The results are listed in Table III. Surprisingly,
we discover that less than 4% of apps are actually calling the
privacy policy-related APIs before initializing mobile notifi-
cation services. Some developers hard-code user confirmation
parameters, with 10 apps (7 apps with OneSignal and 3 apps
with MobPush) having this issue. This observation is quite
astonishing as only 1/3 platforms provide the APIs, so their
practical development is even worse. As such, we conclude
that it is a common case: users are never aware of the stealthy
data collection from notification platforms.

2) Stealthy Data Collection: To exploit the stealthy data
uploading behaviors, we employ the testing apps as we have
mentioned in Section IV-A3 to analyze such behaviors when
the apps are running on the testing smartphone (Samsung
Galaxy S9+). We use Wireshark to capture the network packets
from this device and check the account console of notification
platforms to examine user data. The statistical results are
shown in Table IV, with details depicted as follows.
Six platforms collect user in-app behaviors. We find that
6 notification SDKs (i.e., Airship, Jpush, Kumulos, Leanplum,
OneSignal, and Pushwoosh) upload the user in-app behaviors,
such as the app running time, user click events, and others,
as shown in Table IV. Besides, Leanplum SDK can collect
the users’ Google Play purchasing behaviors. Such a data
collection behavior is quite similar to that of the analytical
SDK. We further discover that the other two notification
platforms, i.e., Getui and Umeng, separate the analytical SDK
and notification SDKs, so that the user in-app behavior will
not be collected in the notification SDK.
Nine platforms collect location information. Nine notifica-
tion SDKs (i.e., Airship, Getui, Jpush, Kumulos, Leanplum,
Mobpush, OneSignal, Taplytics, and Umeng) are found to
upload location information, including IP, geographic coor-
dinates, and geofencing events. Once the location sharing
functions are called in the application such as “OneSig-
nal.setLocationShared()”, the device location information will
be shared to the respective notification platform. Although
such functions facilitate the application development, the
location information will be shared without users’ consent,
representing a fatal sensitive information leakage. Considering

that massive amounts of applications could access notification
services from the same platform, such data exposure issues
could explain why users always receive over-precise location-
based notifications in some applications even they never grant
the corresponding permissions.

3) Released Apps Inspections: We further analyze the col-
lected 16269 applications with notification services for de-
tecting privacy exposure issues. We conduct the taint analysis
as proposed in Section IV-A3 to automatically scan the apps
and generate the sensitive data flows. Our analytical results
reveal that 6705 apps (over 41%) upload the sensitive user data
(i.e., in-app behavior and location) to notification platforms.
Their detailed distributions are shown in Table IV. Such results
indicate that the user data exposure issues, especially location
data uploading (detected in 5567 apps), are the common
phenomenon. In addition, user in-app information collection
is also found in 1138 apps, including page jumping, app
using time, purchase actions, and other actions, which possess
billions of installations.

To highlight the severity of user data exposure, we list
some apps with large installation amounts. For instance,
one app (employing Taplytics platform) called “Monster Job
Search” has 5,000,000+ installations, which is a job searching
application that requires location information to support its
social community. Our taint analysis detects a data flow from
the system location APIs to the Taplytics location uploading
function, i.e.,“optInTracking”, indicating that the notification
SDK shares the user location with Taplytics. Moreover, a local
shopping app (employing Getui) having 500,000+ installations
is also discovered to upload app installation lists, and a weather
forecast app (employing Umeng) having 10,000+ installations
is found to share the smartphone sensor data.

4) Notification Monitoring Study: Since the inference ac-
tions after acquiring notification messages occur on the server
side, it is difficult to track them. So, our analysis will focus
only on exhibiting the statistical results of released apps that
apply for notification listening permission and raise attention
to such a new side-channel attack. According to our analysis
of collected apps, 245 apps with 1,420,000+ installations
enable the listening permissions to capture the notification
messages. They can monitor and collect the notifications to
infer user privacy information. We further conduct a case
study to exhibit notification monitoring behaviors. We de-
velop a testing app that carries Kumulos notification SDK
and let it pretend to be a normal weather app while ap-
plying for “BIND NOTIFICATION LISTENER SERVICE”
permission. However, this app is coded to record the mes-
sage displayed in the notification bar. We install it on our
smartphone, which also installs Alipay, DoorDash, and Twitter,
to simulate the real scenario. After receiving a money trans-
fer into the account in Alipay, our testing app succeeds in
capturing the Alipay notification “xxx transfers 10 yuan to
your account”. Also, the nearby restaurant recommendation
notifications from DoorDash, which can help to infer the
location, and the notification of interested friends from Twitter,
which can be further trained for user portrait inference, are all

TABLE IV
THE DATA UPLOADING BEHAVIOR IN 12 NOTIFICATION PLATFORMS AND APP AMOUNTS

Notification Platforms User in-app Actions App Amounts Location Information App Amounts

Airship App usage time, User click event, Developer-defined action 217 IP address, GPS 561
Getui None 0 IP address, GPS, Geofencing 1022
Jpush App usage time, User click event, Developer-defined action 229 IP address, GPS, Geofencing 627
Kumulos Developer-defined action 151 IP address, GPS, Geofencing 287
Leanplum Developer-defined action,Google Play purchase 68 IP address 65
Mobpush None 0 IP address, GPS 627
OneSignal App usage time, User click event, Developer-defined action 402 IP address, GPS, Geofencing 874
Pushbot None 0 None 0
Pusher None 0 None 0
Pushwoosh Developer-defined action 29 None 0
Taplytics None 42 IP address, GPS, 69
Umeng None 0 IP address, GPS, Geofencing 1435

captured. We hope that our results can raise public attention
to privacy inference issues from mobile notification messages.

VI. RELATED WORK

Our work is related to the security vulnerability and privacy
exposure regarding the messaging APIs, the notification SDKs,
the mobile notification service.We briefly discuss the existing
works and differentiate our work with them.

To discover vulnerabilities of network protocols and web
APIs, different automatic tools have been proposed. For exam-
ple, [15], [32], [16], [20] have developed Polyglot, AutoFor-
mat, Dispatcher, and Discoverer, respectively to automatically
dissect the web protocols. Regarding web API-based apps,
Waptec [13] and NoTamper [12] were proposed to identify
parameter tampering vulnerabilities while [37] proposed a
solution to detect the mobile app-to-web API communication
inconsistency. Recently, [60] proposed LeakScope to identify
the data leakage vulnerabilities on cloud APIs and [26] an-
alyzed the authentication and authorization flaws of user ac-
count access in web APIs. On the other hand, the security and
privacy analysis of third-party SDKs have also been widely
studied. In [45], [46], [19], [23], authors explored the personal
identification information leakage through third-party SDKs
while [24], [11], [29], [47] studied the privacy exposure caused
by the Android permission inheritance mechanism.Targeting
widely-adopted SDKs, in [36], [35], authors examined what
information is collected by the analytics library in the Android
apps. In [21], [38], [40], [43], [57], authors explored the data
collection issues of in-app advertising and payment SDK.
Different from them, we target the mobile notification service
via analyzing both the API and the notification SDK.

Regarding mobile messaging services, some efforts have
been done in unveiling the vulnerabilities and privacy issues.
In [34], authors developed a tool for identifying aggressive
notifications received at the device. Besides, [8], [39] detected
the malicious apps with the misuse of Google Firebase Cloud
Messaging, while [56] discussed phishing and spamming at-
tacks by abusing notification services on smartphones. In [17],
a detection tool Seminal was designed to extract semantic in-
formation from source code. In [31], authors analyzed Google
older GCM messaging system, revealing the vulnerabilities
of stealing or wiping sensitive messages and of installing or
uninstalling apps on a user’s device.

VII. LIMITATIONS AND FUTURE WORK

This section discusses our limitations and the future work.

First, this paper provides the first comprehensive and sys-
tematic study toward mobile notification services in the An-
droid ecosystem. However, the corresponding study of the iOS
ecosystem remains open. Per our preliminary investigation,
the Apple corporation provides its own notification platform
and APIs for the applications to push mobile notifications,
which is quite different from the Android system where the
notification services employ third-party platforms. Hence, the
corresponding security and privacy analysis toward mobile
notification services in the iOS system calls for new analytical
approaches, which are deferred to our future work.

Second, we have developed a tool NotiLeak for auto-
mated analysis, including KEY misuse, privacy policy, data
collection, and notification monitoring analysis, which can
help us significantly speed up the inspections on massive
amounts of apps in the Android market. Considering many
strong techniques have been proposed, our NotiLeak can be
further improved to integrate them, to make our NotiLeak
more effective and efficient. For instance, some techniques
proposed [9], [58], [25] for tracking the data flow can be in-
tegrated into NotiLeak with the customized design to improve
our privacy policy compliance analysis. On the other hand,
our current documentation analysis relies on manual checking,
which is cumbersome and ineffective. In the future, we plan to
employ the existing techniques [18] or develop new tools, to
be integrated into our NotiLieak, for enabling the automated
documentation analysis.

Third, our notification monitoring analysis has exhibited
that an attacker can acquire permission to monitor other apps’
notification messages displayed in the notification bar, which
can potentially incur the privacy inference risk as discussed in
Section IV-B2. But, how to infer a user’s private information
based on these messages remains unexplored, which is not the
goal of our current work. Hence, in our future work, we plan to
develop inference attack solutions based on these notification
messages, which can further exhibit the severe consequences
of privacy risks incurred from mobile notification services.

VIII. CONCLUSION

In this paper, we have conducted the first comprehensive
analysis toward the mobile notification ecosystem. We ana-
lyzed the employment of third-party notification platforms and
detected three vulnerabilities derived from the misconfigura-
tion of KEY, weak application authentication, and weak mes-
sage verification mechanism. Regarding the privacy leakage
issues, we analyzed the privacy policy compliance implemen-
tation and proposed a top-down scheme to explore the sensitive

data collection from both notification platform and application
perspectives. Our empirical studies on 12 popular notification
platforms discovered several insecure mobile notification de-
signs and uncovered that the privacy policy compliance is
under the subpar implementation. In addition, over 50% of
30,000+ applications are exposed to stealthily collect user data,
impacting billions of users. We hope our efforts will not only
inspire the in-depth research toward exploring the security and
privacy issues in mobile notification ecosystem, but also raise
public attention to regulate the design and implementation of
mobile notifications.

ACKNOWLEDGMENT

This work was supported in part by NSF under Grants
1763620, 1948374, 2019511, and 2146447. Any opinion and
findings expressed in the paper are those of the authors and
do not necessarily reflect the view of funding agency.

REFERENCES

[1] Dexguard android obfuscator. https://www.guardsquare.com/dexguard.
[2] Dexprotector android obfuscator. https://dexprotector.com.
[3] General data protection regulations. https://gdpr-info.eu/.
[4] Md5 collision materials. https://www.dropbox.com/sh/gviy9s1xenbl3fk/

AABZLVCAqIZH81e KlRbgmFta?dl=0.
[5] The personal data protection bill. https://prsindia.org/billtrack/

the-personal-data-protection-bill-2019.
[6] Provisions on the scope of necessary personal information for common

types of mobile internet applications. http://www.cac.gov.cn/2021-03/
22/c 1617990997054277.htm.

[7] Apktool. http://ibotpeaches.github.io/Apktool/, 2016.
[8] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and

Giorgio Giacinto. Detecting misuse of google cloud messaging in
android badware. In Proceedings of the Workshop on Security and
Privacy in Smartphones and Mobile Devices, pages 103–112, 2016.

[9] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao Xie.
Policylint: Investigating internal privacy policy contradictions on google
play. In USENIX Security Symposium, pages 585–602, 2019.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259–269, 2014.

[11] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 356–367, 2016.

[12] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz,
and VN Venkatakrishnan. Notamper: automatic blackbox detection of
parameter tampering opportunities in web applications. In Proceedings
of the ACM conference on Computer and communications security
(CCS), pages 607–618, 2010.

[13] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and VN Venkatakr-
ishnan. Waptec: whitebox analysis of web applications for parameter
tampering exploit construction. In Proceedings of the ACM conference
on Computer and communications security (CCS), pages 575–586, 2011.

[14] John Black, Martin Cochran, and Trevor Highland. A study of the md5
attacks: Insights and improvements. In Proceedings of International
Workshop on Fast Software Encryption, pages 262–277. Springer, 2006.

[15] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn
Song. Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the ACM conference on
Computer and communications security (CCS), pages 621–634, 2009.

[16] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot:
Automatic extraction of protocol message format using dynamic binary
analysis. In Proceedings of the ACM conference on Computer and
communications security (CCS), pages 317–329, 2007.

[17] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui
Han. Perplexed messengers from the cloud: Automated security analysis
of push-messaging integrations. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages
1260–1272, 2015.

[18] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai
Chen, and Wei Zou. Devils in the guidance: Predicting logic vulnerabil-
ities in payment syndication services through automated documentation
analysis. In USENIX security symposium, pages 747–764, 2019.

[19] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessan-
dro Puccetti, Ali Zand, Christopher Kruegel, and Giovanni Vigna.
Obfuscation-resilient privacy leak detection for mobile apps through
differential analysis. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2017.

[20] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer:
Automatic protocol reverse engineering from network traces. In Pro-
ceedings of USENIX Security Symposium, pages 1–14, 2007.

[21] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A
Gunter. Free for all! assessing user data exposure to advertising libraries
on android. In Proceedings of Annual Network and Distributed System
Security symposium (NDSS), 2016.

[22] Bert Den Boer and Antoon Bosselaers. Collisions for the compression
function of md5. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 293–304. Springer, 1993.

[23] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael
Backes. Keep me updated: An empirical study of third-party library
updatability on android. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 2187–2200,
2017.

[24] Michalis Diamantaris, Elias P Papadopoulos, Evangelos P Markatos,
Sotiris Ioannidis, and Jason Polakis. Reaper: Real-time app analysis for
augmenting the android permission system. In Proceedings of the ACM
Conference on Data and Application Security and Privacy (CODASPY),
pages 37–48, 2019.

[25] Zikan Dong, Liu Wang, Hao Xie, Guoai Xu, and Haoyu Wang. Privacy
analysis of period tracking mobile apps in the post-roe v. wade era.
In 37th IEEE/ACM International Conference on Automated Software
Engineering, pages 1–6, 2022.

[26] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie
hunter: Automated black-box auditing for web authentication and au-
thorization flaws. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1953–1970, 2020.

[27] Google. Proguard. http://developer.android.com/tools/help/proguard.
html, 2014.

[28] Payas Gupta, Swapna Gottipati, Jing Jiang, and Debin Gao. Your
love is public now: Questioning the use of personal information in
authentication. In Proceedings of the ACM SIGSAC symposium on
computer and communications security (ASIA CCS), pages 49–60, 2013.

[29] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. The art of
app compartmentalization: Compiler-based library privilege separation
on stock android. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1037–1049, 2017.

[30] Arjen K Lenstra, Xiaoyun Wang, and BMM de Weger. Colliding x. 509
certificates. https://eprint.iacr.org/2005/067, 2005.

[31] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad
Naveed, XiaoFeng Wang, and Xinhui Han. Mayhem in the push
clouds: Understanding and mitigating security hazards in mobile push-
messaging services. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 978–989, 2014.

[32] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Auto-
matic protocol format reverse engineering through context-aware mon-
itored execution. In Proceedings of Annual Network and Distributed
System Security Symposium (NDSS), pages 1–15. Citeseer, 2008.

[33] Jack Lindamood, Raymond Heatherly, Murat Kantarcioglu, and Bhavani
Thuraisingham. Inferring private information using social network data.
In Proceedings of the international conference on World Wide Web
(WWW), pages 1145–1146, 2009.

[34] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai
Xu. Dapanda: Detecting aggressive push notifications in android apps.
In Proceedings of IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 66–78. IEEE, 2019.

[35] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang.
Privacy risk analysis and mitigation of analytics libraries in the an-

droid ecosystem. IEEE Transactions on Mobile Computing (TMC),
19(5):1184–1199, 2019.

[36] Xing Liu, Sencun Zhu, Wei Wang, and Jiqiang Liu. Alde: Privacy risk
analysis of analytics libraries in the android ecosystem. In International
Conference on Security and Privacy in Communication Systems (CCS),
pages 655–672, 2016.

[37] Abner Mendoza and Guofei Gu. Mobile application web api reconnais-
sance: Web-to-mobile inconsistencies & vulnerabilities. In Proceedings
of Symposium on Security and Privacy (S&P), pages 756–769. IEEE,
2018.

[38] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke Lee.
The price of free: Privacy leakage in personalized mobile in-apps ads. In
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016.

[39] Mohamed Abdalla Mokar, Sallam Osman Fageeri, and Saif Eldin Fattoh.
Using firebase cloud messaging to control mobile applications. In Pro-
ceedings of International Conference on Computer, Control, Electrical,
and Electronics Engineering (ICCCEEE), pages 1–5. IEEE, 2019.

[40] Suman Nath. Madscope: Characterizing mobile in-app targeted ads. In
Proceedings of the Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 59–73, 2015.

[41] Business of Apps. Push notifications statistics (2019).
https://www.businessofapps.com/marketplace/push-notifications/
research/push-notifications-statistics.

[42] Business of Apps. Top push notifications services (2020). https://www.
businessofapps.com/marketplace/push-notifications/, 2020.

[43] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner.
Addroid: Privilege separation for applications and advertisers in android.
In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 71–72, 2012.

[44] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks.
In Proceedings of Network and Distributed System Security Symposium
(NDSS), 2014.

[45] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao, David
Choffnes, and Narseo Vallina-Rodriguez. A longitudinal study of pii
leaks across android app versions. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[46] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. Recon: Revealing and controlling pii leaks in mobile
network traffic. In Proceedings of the Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), pages 361–
374, 2016.

[47] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo
Kim. Flexdroid: Enforcing in-app privilege separation in android. In
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016.

[48] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In Proceedings of Annual Network and
Distributed System Security symposium (NDSS). Citeseer, 2016.

[49] Marc Stevens. Md5 and sha-1 cryptanalytic toolbox. https://github.com/
cr-marcstevens/hashclash.

[50] Marc Stevens. On collisions for md5. https://www.win.tue.nl/hashclash/,
2007.

[51] Marc Stevens, Arjen Lenstra, and Benne De Weger. Chosen-prefix
collisions for md5 and colliding x. 509 certificates for different identities.
In Proceedings of Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–22. Springer, 2007.

[52] Marc Stevens, Arjen K Lenstra, and Benne De Weger. Chosen-prefix
collisions for md5 and applications. International Journal of Applied
Cryptography, 2:322–359, 2012.

[53] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik, and Benne De Weger. Short chosen-
prefix collisions for md5 and the creation of a rogue ca certificate. In
Proceedings of Annual International Cryptology Conference, pages 55–
69. Springer, 2009.

[54] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In Annual international conference on the theory and
applications of cryptographic techniques, pages 19–35, 2005.

[55] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace.
Reformat: Automatic reverse engineering of encrypted messages. In
Proceedings of European Symposium on Research in Computer Security,
pages 200–215, 2009.

[56] Zhi Xu and Sencun Zhu. Abusing notification services on smartphones
for phishing and spamming. In USENIX Workshop on Offensive
Technologies (WOOT), 2012.

[57] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang,
Yueheng Zhang, and Dawu Gu. Show me the money! finding flawed
implementations of third-party in-app payment in android apps. In
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2017.

[58] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry Chang,
and Hareton KN Leung. Ppchecker: Towards accessing the trustworthi-
ness of android apps’ privacy policies. IEEE Transactions on Software
Engineering, 47(2):221–242, 2018.

[59] Elena Zheleva and Lise Getoor. To join or not to join: the illusion of
privacy in social networks with mixed public and private user profiles. In
Proceedings of the international conference on World Wide Web (WWW),
pages 531–540, 2009.

[60] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your data
leak? uncovering the data leakage in cloud from mobile apps. In 2019
IEEE Symposium on Security and Privacy (S&P), pages 1296–1310.
IEEE, 2019.

