Bit’RNG: Leveraging Bad-page Initialized Table with Bit-error Insertion
for True Random Number Generation in Commodity Flash Memory

Wei Yan', Huifeng Zhu', Zhiyuan Yu'!, Fatemeh Tehranipoor?, John Chandy?, Ning Zhang' and Xuan Zhang'
1Washington University in St. Louis, St. Louis, Missouri, USA
2Santa Clara University, Santa Clara, California, USA
3University of Connecticut, Storrs, Connecticut, USA
{weiyan, zhuhuifeng, yu.zhiyuan, zhang.ning, xuan.zhang} @wustl.edu, ftehranipoor@scu.edu, john.chandy @uconn.edu

Abstract—Nowadays NAND flash memory is the de-facto stor-
age technology that is widely used from compact commercial off-
the-shelf (COTS) embedded devices to large-scale cloud comput-
ing facilities. Motivated by the growing demand for mobile and
Internet-of-Thing (IoT) applications, researchers have proposed
many innovative ways to leverage the physical characteristics of
memory devices for different security functionalities. However,
many existing solutions lack thorough considerations of practical
factors such as device aging, implementation cost, and runtime
speed, preventing them from being directly adopted for real-
world industrial applications. In this work, we present a novel
true random number generation method called Bit?’RNG that
leverages the intrinsic system resources by combining the bad
pages and bit errors in NAND flash as a random source. Our
solution requires no hardware modifications to the memory
chip, its communication interface, or the flash controller, and
consumes no additional system memory space. To demonstrate
the capability and benefit of the proposed Bit’RNG technol-
ogy, we explore several lightweight IoT applications including
cryptographic key generation, device identification, and data
provenance. The experimental results indicate that Bit>’RNG is
a practical solution with better system performance trade-off
compared with other state-of-the-art TRNG techniques.

Index Terms—NAND flash memory, TRNG, cryptographic key
generation, chip identification, image provenance, secure boot.

I. INTRODUCTION

Flash memory has rapidly become the preferred de-facto
storage solution for commercial off-the-shelf (COTS) elec-
tronic devices today. In general-purpose computing systems
such as personal computers and servers, hard-disk drives
are increasingly being replaced by solid-state drives, as the
parallelization operation of NAND flash offers much higher
read/write bandwidth. For resource-constrained systems such
as mobile phones and Internet-of-Things (IoT) devices, flash
is an especially indispensable component thanks to its non-
volatility, high storage density, large capacity, and low cost.
This resource efficiency advantage is even more prominent
when flash is applied to lightweight portable mediums like
SD cards and USB drives [1].

As these devices permeate many critical aspects of our
society and everyday life, their security protection becomes
increasingly important. However, many security primitives
require additional computational power (e.g. asymmetric key
cryptography), or additional hardware components (e.g. true
random number generator), which ultimately increases the
production cost. To enable efficient lightweight security primi-
tives on resource-constraint devices, there have been increasing

interests in the research community to leverage intrinsic phys-
ical features of hardware components to achieve the security
objectives. For example, various physical characteristics of
flash memory cells are used for true random number generators
(TRNG) [2] or physical unclonable functions (PUFs) [3], [4].
These solutions are generally limited in two ways. First, all
of the existing TRNGs make use of the physical properties
that require a customized flash controller to gather low-level
operating information such as operation time difference and
bit-flip disturbs. Yet, the majority of COTS flash controllers
do not expose such information to users, and would require
extensive engineering undertaking to support it [5]. Second,
many PUF solutions do not consider the aging effect in the
flash devices. Experimental results demonstrate that both the
program time and the erase time vary in a distinguishing
way [6]. Consequently, a bad correlation coefficient can lead
to false negative in the identification progress. As a result,
the flash-based PUF is effective in the beginning, but the
performance continuously degrades during the life cycle of
the device.

In this paper, we propose Bit?RNG, a design that requires
no modification to commercial flash controllers, and therefore,
it can be widely adopted by billions of flash-based devices.
Bit?2RNG makes use of the bit error information that is widely
available at the application level for randomness, and the bad
page information for non-forgeability. As a result, besides its
impact on system performance, aging also enables a non-
forgeable identification, which is a necessary key property for
many modern security primitives. Considering the practical
TRNGs and identification requirements for COTS devices, any
modification to flash controllers should be avoided. Therefore,
instead of relying on obtaining low-level operation timing
information that is unsupported by commodity flash memory,
we turn our attention to existing high-level system information
in COTS NAND flash chips that are intrinsically collected by
the flash controller and made observable to the user level —
bad pages and bit errors. Bad pages are due to chip manufac-
turing defects while bit errors are caused by a series of factors
including the physical sensitivities and user operation intensity.
Since both belong to uncontrollable and unpredictable faults,
they are reported to the flash translation layer (FTL) or drivers
with similar mapping functions through a flash controller [7].
In our work, we leverage these physical nonidealities of flash
devices and leverage them for useful security primitives at no

additional design costs and without any hardware modification.
Our proposed Bit?’RNG design is a practical true random
number generator that uses a bad-page initialized table with
bit-error insertion. The dynamically-updated bad page is used
to initialize the seed to generate the random numbers, and
the real-time progression of bit errors enhances the entropy
of the TRNG output. With no additional hardware resources
and simple software computation, Bit?’RNG guarantees a se-
cure randomness source for lightweight embedded electronic
devices. Besides, the evolution of bad pages in a flash system
exhibits a delicate non-fungible characteristic that is sensitive
to the Program/Erase (P/E) operations. Therefore, they provide
important utility in terms of tampering awareness and content
integrity, which is further explored in our work through the
introduction of three applications—chip identification, image
provenance, and secure boot. Our contributions are summa-
rized as follows:

To our knowledge, this is the first work that makes use
of intrinsic high-level flash system features such as bad
page and bit error to build a TRNG security primitive in
lightweight devices.

We follow the COTS flash controller standard to extract
the physical property of NAND flash memories without
adding extra hardware resources. We also perform com-
prehensive analysis and characterization of Bit?RNG to
experimentally demonstrate its practicality in commodity
flash systems.

We showcase several security applications of Bit?RNG,
each leveraging the unique strengths of the primitives,
such as chip identification via aging estimation based
on P/E cycles, tamper protection on multimedia via
unforgeable randomness from flash bad pages. These use
cases illustrate the versatility of our primitives combining
aging guided nonforgeability and randomness. No mea-
surable false positive or false negative is detected in the
experiment, which is also theoretically proven.

II. BACKGROUND AND PRELIMINARY WORK
A. NAND Flash Cell

A floating gate memory cell is a type of metal-oxide-
semiconductor field-effect transistor (MOSFET). The voltage
adopted on the control gate and substrate affects the current
flows in the middle layers. The floating gate is interposed be-
tween the control gate and substrate, surrounded by electrical-
insulated oxide. As shown in Figure 1, information can be
stored as the presence or absence of trapped charge on the
floating gate by a quantum mechanical effect called Fowler-
Nordheim tunneling.

As illustrated in the page program and block erase part of
Figure 1, erasing the contents of a memory cell is done by
placing high voltage on the silicon substrate while holding
the control gate at zero. This is defined as a logic level ‘1’
in a single-level cell (SLC) flash memory cell. Relatively,
the cell is programmed by placing a high voltage on the
control gate while holding the source and drain regions at

«— 4320 bytes — «<—— 4320 bytes —>

1 224 :%Cache Registers

[4096 12241 409
(4096 | 224| 4096 | 224 i=Data Registers
1 page = 4K + 224 bytes
[1Page 1 block = 4320 bytes x 256 pages
(I 1Block 1 Block 1 plane = 256 pages x 1024 blocks
S 1 LUN = 1024 blocks x 2 planes

N
N

C ; L — N
Plane 0(0,2,4,..,2046) Plane 1(1,3,5,..,2047) “._

T —
Logical Unit (LUN) :

Page

Program %

Block
Erase o

Fig. 1. Typical NAND flash array and cell structure.

zero. This is regarded as a logic level ‘0’ in an SLC cell.
With multi-level cell (MLC) flash memory, there are multiple
programmed states. Typically, it allows two or more data bits
to be stored in the memory cell. MLC memory cells tend
to wear out faster than SLC memory cells because they are
more sensitive to physical changes in the insulating oxide
layer. MLC memory cells also experience higher levels of read
errors due to variations in control gate threshold voltage and
disturbances from neighboring memory cells.

B. NAND Flash Array

Flash memory cells are organized into a hierarchy of
package, target, logical unit (LUN), plane, block, page, and
column. For example, as illustrated in Figure 1, a 16 GB
flash has a single logical unit inside a single target, which
consists of two planes, divided into 1,024 even- and odd-
numbered blocks. Each block contains 256 pages. A memory
page contains 4,096 bytes of user data and 224 bytes of spare
area. The additional area is used by the flash controller or FTL
for data management such as error correcting code (ECC), bad
block marking, and other system purposes.

The fundamental operations of flash memory include read,
program, and erase. Because of the serial cell arrangement, it
is not possible to directly access individual data bytes within
a memory page. Both read and program operations have to
be perfprmed at the page level. A simple read page operation
takes the maximum time of 75 s. Note that the latency of read
operations is the only latency that is not significantly affected
by the NAND flash lifecycle. Page program operations need
a typical array latency of 1,300 s in a new flash, and its
performance degrades due to the aging effect of flash cells.
Unlike a hard disk which can be overwritten directly in the
same address, NAND flash requires a block erase operation
before reprogramming the same page to avoid potential bit
errors during the over-programming operations. An erase
operation typically takes 3.8 ms or longer to finish setting

the whole block with value ‘1°. Since the erase operation is
executed compulsorily before programming the existing values
at the block level, it causes write amplification that merges
useful data to other blocks before erasing. Consequently, this
feature accelerates the aging of flash memory cells.

C. Bad Block

When failures occur during NAND flash device operation,
they are categorized as either permanent or temporary failures.
A permanent failure caused by a manufacturing defect or
aging cannot be recovered while a temporary failure can be
corrected. Most NAND flash devices include some initial bad
blocks within the memory array during the manufacturing
process. Factory-generated bad blocks are tested under worst-
case conditions, and those blocks that fail this factory testing
are marked as bad. To avoid erasing a factory-marked bad
block and losing the information, every new chip is required
to perform an initial read for bad blocks and create a bad-
block table before issuing any program or erase commands.
For example, in Micron MLC devices, any block where its
first byte in the spare area of the last page does not contain
“FFh” is a bad block. Since permanent bad blocks are unique
to individual flash chips and located randomly, they can be
regarded as fingerprints of the device.

NAND flash factories define endurance as their device
lifetime. Over time, the tunnel oxide will lose its insulating
properties, leading to the inability to erase or program a cell.
For SLC flash, the typical endurance threshold is 100,000
P/E cycles. Most MLC chips, however, only behave reliably
within 3,000 P/E cycles. An aged flash that is beyond the
specification degrades by generating more bad blocks and
finally wears out. Due to the different scale of the program
operation and erase operation, we cannot avoid skipping any
certain bad page when erasing the whole block. As this occurs,
the flash controller will retire the entire block from use and
replace it with a reserve block in the over-provisioning area.
Alternatively, the deterioration of the increasing bad blocks is
compensated for by using wear-leveling algorithms in many
FTLs, which evenly spreads the P/E cycles over the entire
blocks. Finally, to detect whether a block has worn out or
not, one can issue a read status command after any erase
or program operation. This command will report whether the
previous operation is passed or failed.

D. Bit Error

Temporary failure occurs in multiple forms: data corrup-
tion by program/read disturb, data loss by retention issues,
and over-programming. In the first case, bit error appears
in random locations, which provides unpredictable features
to be used in the proposed applications. The read/program
disturb error occurs when one or more bits in cells are not
intended to be charge disrupted during adjacent memory page
read/program operations. NAND flash memory cells are more
susceptible to disturbances from reading and programming
neighboring pages due to the high density of memory cells
of the silicon wafer. Moreover, the coupling may lead to

random bit errors in the stored data and cannot be controlled
artificially.

Data retention problem refers to flash cell value flipping
due to charge gain or charge loss. High program/erase cycle
counts can exacerbate the stressful conditions in the tunnel
oxide by inducing trapped charge and effectively wearing
out the gate oxide. To be specified, high field strength leads
to structural changes in the oxide layer and creates defects
that trap electrons. More structural defects behave like tiny
“cracks” in the insulation that permit the charge on the floating
gate to leak out into the substrate. The oxide layer breaks down
over time and the stored value flips.

E. Related Work

True random number generation has attracted a significant
amount of attention in the past decade [8]. Though it is
possible to generate randomness from many chaotic physical
processes such as thermal noise, voltage noise, and atmo-
spheric noise, their low entropy fails to keep up with mul-
tiple security requirements. Instead, Pseudo Random Number
Generator (PRNG) is developed to compensate for the lack of
high-speed TRNG using the hardware noise as seed. Typically,
software RNG produces cryptographic secure randomness by
measuring physical events available in modern computers. The
essential design is to maintain an “entropy pool” of random
initial values that are assumed to be unknown to any attacker.
Thus, the TRNG strategy is to maintain a stream cipher with
a key and initialization vector obtained from an entropy pool.
When enough bits of entropy have been collected, replace both
the key and vector with new random values and decrease the
estimated entropy remaining in the pool. It provides resistance
against some attacks and conserves hard-to-obtain entropy. As
shown in Figure 2 (a), the Linux OS transfers the entropy
input to its kernel entropy pool where it is hashed and output
through two interfaces. =dev=random provides data with
100% entropy while =dev=urandom serves for continuous
output even if the pool has low entropy [9]. However, while
this design is effective for desktop or server systems that
constantly interact with a dynamic digital environment, this
solution is often not effective for many embedded IoT devices,
which do not have any of the digital randomness sources as
in traditional desktop systems.

Device fingerprint is another application of NAND flash
chips, which was first introduced in 2011 [10]. It evaluates
the unique features extracted from program disturb, read
disturb, and program operation latency. A followup work
provides more experimental results to support the program
latency based fingerprint and also discuss the TRNG using
random telegraph noise [11]. Similar work regarding program
time and erase effect based PUF application illustrates the
characterization of the physical mechanism [4]. However, the
existing works fail to take the device aging into consideration,
which may lead to the obvious false-negative rate. This fact
is also mentioned in the TRNG work using the read noise of
flash cells [2]. Nonetheless, the claimed tolerance to aging and
temperature effects cannot be applied to device identification

Entropy Source

Hardware RNG Update entropy usage
{ |
Mouse/Keyboard PRNG (| /dev/random
Entropy i
Pool Application
Interrupts }/ 00 PRNG [—{ /dev/urandom
_ i \
Disk 1/0

(a)

Flash Bad Page
Entropy

PRNG
Control

Application

Flash Bit Error

(b)

Fig. 2. (a) Typical entropy lifecycle in Linux; (b) Proposed bad-page and
bit-error based entropy source and TRNG using NAND flash memory.

due to the deterministic requirement. A NAND flash-based key
generation solution uses bit-map and position-map methods to
select reliable cells for robust outputs [3]. Considering the
evaluation under various temperatures and aging conditions, a
bit error rate under 10 6 proves the key generation application
to be more realistic. Another relatively practical application
is to detect recycled flash memories with the help of flash
array parameters such as erase time, program time, and fail
bit counts [12].

III. BIT2RNG DESIGN AND CHARACTERIZATION

A. Bit?RNG System Design

As illustrated in Figure 3, our Bit?RNG design includes four
layers: NAND flash memory, hardware memory control logic,
software post-processing, and user applications. The bottom
layer is the commercial NAND flash memory that stores
system boot files, cryptographic keys, and user-generated data.
While an electronic device is running regular programs that
require access to the NAND flash memory, the chip notices
bad-page and bit-error information to the upper layer. By doing
80, it leaks the uniqueness and randomness in the meanwhile.
Due to the special timing standard and mapping mechanism,
users cannot read flash data from the OS directly. Instead,
all the information should be collected by a hardware control
layer first and then transferred to the address translation layer
for post-processing. As illustrated in Figure 3, the memory
layer and the hardware control layer are wire-connected.
Usually, the control layer is an individual chip called the flash
controller, but it can also be implemented in the FPGA. Com-
mands from the software layer are converted to open NAND
flash interface (ONFI) standard and executed in a pipeline. The
flash status will be reported to the upper layer afterward. The
third layer is known as the flash translation layer or flash file
system, which maps the virtual address of a file system to the
physical address of flash memory. FTL can be regarded as the
flash driver of the Linux kernel as well. In our design, the FTL
includes page-level mapping, optional wear leveling, optional
garbage collection, bad block/page management, ECC, and the
proposed TRNG module. Essentially, Bit?RNG extracts a bad-

[User Applications]
H Key Generation
/ ARM %
Linux OS PRNG e
Bad-page [] IC Identification
Initialized| " £jash Translation Layer\
Table Image Provenance
:: Bad Page Management]
C Bit’RNG]': OS Secure Boot
Bit-error Error Correction J
Inserted
TRNG

FPGA
AXI Bus Core

~
]

Flash Controller]
=/

Fig. 3. Zynq SoC demo for Bit?’RNG design with random source, controller,
FTL, and application layers.

NAND Flash Memory]

page table from the bad block management module for the
index data. It also obtains bit error messages from the ECC
module before being corrected by Hamming code. With the
time-stamped unique fingerprints and real-time random faults,
Bit?RNG is able to update the entropy dynamically. As shown
in Figure 2 (b), Bit?RNG sends the entropy to a software
PRNG to generate high-quality random numbers. In the final
layer, the operating system provides the interface of four user
applications: cryptographic nonce, chip identification, image
provenance, and secure boot. Those applications will either
use the TRNG directly or apply part of the Bit?’RNG output.
The details will be discussed in the later section.

B. Bad-page Initialized Table

Counting physical bad block numbers in a simple flash
chip is insufficient for satisfying both the entropy and speed
request of TRNGs. Instead, we choose the fine-grained units
(bad pages) as the target for analysis, which can enlarge the
entropy source by 64 to 256 times for a commercial flash chip.
We notice the fact that in most flash bad block management
strategies, the entire block can be marked as a bad block
for reliability consideration, even if there is only one bad
page detected and other pages are still available. Moreover,
any malicious P/E operation cannot completely clone the
features of a certain bad block. In other words, the bad page
location, number, and the operating latency of other pages
are randomly generated in the permanent locations. Given the
fact that attackers measure the current chip status by physical
tampering, the existing bad pages are unclonable in reality
while the location of any new bad page is unpredictable. The
possibility of cloning the entire chip can be estimated by the
following equation:

N'd 1

p
;p = 256;b = 2048 (1)
i (V) P

Pcollision =
i=1

Here, we set the page number p to 256 and block number b
to 2,048. The failure page amount in block j at the P/E cycle
t is defined as f;j(t). Even for the unaged flash chip sample
with one bad page over 10 blocks, the collision rate is 2 640
on average, which is impractical to achieve.

Though initial bad block information can be directly ob-
tained from the spare area of certain NAND flash pages, any
new bad page or bad block has to be marked by the bad
block management in FTLs. Measuring a failure of page or
block operation requires the controller to issue a “Read Status”
command to the current page or block, which is acceptable by
the last-selected LUN even when it is busy. The 8-bit status
register indicates the failure of operation if the LUN array
and I/O keep busy all the time. Alternatively, one can also
monitor the R/B signal of a NAND flash package to determine
a bad page when it keeps low far beyond the typical operation
latency. After the flash controller finishes collecting the status,
the FTL can update the bad page table to generate new entropy
for TRNGs.

To extract sufficient entropy from the bad-page table, we
collect m groups of 8-bit page address and 11-bit block
address information from the table. Ideally, the total bit length
should be equal to 128 bits as an initial value, which means a
minimum group number of 7 is required. If the bad pages are
not enough, 14 —m regular pages will be selected to make up
the rest of the bits. A PRNG will use the value to generate
random numbers. Given | as the information content of X, the
entropy is equal to the expected value of the random variable
I (X). For the probability mass function P (X) and discrete
random variable X, the entropy within my, bad-page table
update can explicitly be present as:

HX)=E[IX)] = P(xi)logzP (xi) 2

i=1

For a RNG that only uses bad-page as the source of entropy,
any binomial coefficient result has the even chance to be
selected. Therefore, the probability function can be formulated
as the following:

n k X
i ki
P(Xi) = 45— n=256x2048; k= fj(t) (3
K i=1

Here n is the total page amount in the flash memory. K means
the total number of bad pages in a chip, which is the sum
value of each block fj and can be affected by the P/E cycle
t. According to the fitting curve of the experimental results
in Figure 4, we can build the theoretical function fj(t) to
estimate k:

35000 30000

9 30000 Bad Pages: =
%a Measured Data & 25000 g
2 25000 ~ Fitting Curve — (1) z
'% Bit Errors: 20000 =
D 54000 Measured Data © =}
T Fitting Curve =
g 9 15000 S
= 15000 2
[w
,_ 10000 &
é 10000 ;H:I
(o]
2 5000 5000

0 d 0

0 10000 20000 30000 40000 50000

P/E Cycles

Fig. 4. Bad page and bit error cumulative quantity across different P/E cycles.

6:21 1042

(t
fi(t) = 19:62 x e~ sa7 108 @

C. Bit-error Inserted TRNG

Due to the flash endurance characteristic, bad pages are
boosted after the threshold. However, the entropy pool updates
slowly before that. To avoid the entropy pool drying out, we
fetch bit errors from the error correction module and insert
them to the initial value register of Bit?RNG. We refresh the
entropy intentionally in order to output 128-bit strings with a
new entropy in time. As the bit error growth trend shown in
Figure 4, we fit the function e(t) based on the measured bit
errors in each P/E cycle: e(t) = 6:346 x 10 1°t* — 2:466 x
10 '0t3 +7:146 x 10 St% +0:00253t + 118:8. By combining
the bad pages and bit errors, the new entropy pool updating
rate can be calculated as:

(2 — 1) x e(t)

R() = =

(&)

Here tis the P/E cycle count between two bad-page table
updates, which can be one P/E cycle or several cycles. Note
that the actual time spent during each P/E cycle is a nonlinear
function u(t) rather than a fixed value. According to our aging
tests on Micron, Samsung, Hynix, and Toshiba flash memories,
the erase latency always grows longer while program time
becomes shorter. Since the entropy pool update rate is known,
we can further compute the average throughput for a 128-bit
TRNG:

P
L R(i) x 128

TRNG Throughput = 0

(6)

Now we consider the mixegh entropy H'(X;E) in
Bit’RNG. Set H'(X;E) = " PYxi)logsP’(xi) =
hiei+::: +hmeme, in which m < m'. Meanwhile, the
linear complexity of S defines the set of random sequence
attempt from 1 to T. Note that the maximum number of trials

cannot exceed the current P/E cycles. Given a measurable Sg,
breaking Bit?2RNG means to solve the equation:

Fe(he; i hmser i emo) =S t=1;05T @)

St is the subset of S for the ty, attempt. The calculation of
each stage is provided in term of linear function L¢(p1;:::; Pr)
as follows:

s1 =aip1 = Li(p1)
S2 = azP1 @ aip2 = La(p1;p2)
S3 = asp1 & azp2 b a1ps = L3(P1; P2; P3) (8)

St = @)_pat 1Pi+1 = Le(P1;Pa; i Pr)

The coefficient a; can be extracted from Equation 5. As long
as the entropy pool is updated by bad pages or bit errors, a¢
is unpredictable to the attacker. The TRNG must be resistant
to exhaustive attacks on the entropy. With the entropy size of
2™ — 1, the attack needs the knowledge of 2 | (S) + 1 bits,
which refers to the linear complexity of Equation 8.

IV. BIT2RNG APPLICATIONS

Bit?’RNG leverages two distinct properties in commodity
modern flash, unforgeable bad page and truly random bit
error, to enable different security services with little impact
on the performance and hardware design. In this section,
four applications will be presented, each applying these two
capabilities in different manners.

A. Cryptographic Nonce

A cryptographic nonce is a unique number adopted only
once in a cryptographic protocol. It is often implemented
using a random or pseudo-random number in a challenge
and response protocol for replay attack prevention. They
are also commonly applied as initialization vectors. A naive
approach would be to simply use the bit error as the random
number generator to produce nonce. However, it puts a strict
requirement on the random number generation process from
bit error to never produce the same number. One way to
accomplish this is to generate a very large random number,
given that true random number can be generated from the bit
error, the probability of having the same number generated is
very small. Depending on the targeted application, the length
of the random number can be extended. One clear drawback
of this approach is the computation-extensive random number
extraction. Another approach to make nonce unique is to
add time as a new dimension into the nonce generation
process. However, for low power devices or devices in adverse
environments, it is difficult to get a trustworthy time source,
and this remains an open challenge in computer system. To
tackle this problem, we can leverage the aging effect of flash
as a notion of time, to add the temporal dimension into the
nonce generation. Using the nonforgeability of bad pages and

randomness of bit errors, Bit?RNG is able to apply physical
properties of a commodity flash chip to generate random
unique nonce without additional hardware.

B. Chip Identification

Our work also contributes to the chip identification in the
supply chain. For the COTS, any additional identifier like
Radio-frequency identification (RFID) is not welcome due
to the extra cost. Bit?’RNG, which simply needs the existing
NAND flash memory in the embedded systems without any
modification to the hardware, can be an ideal solution against
the memory chip counterfeiting. By utilizing bad-page based
random process variables, our method is supposed to exhibit
two characteristics to work in a production environment:
First, the chip can generate unique and unclonable digital
ID; Second, the ID code must be repeatable correctly over
the temperature, aging, and other noise. To be specific, we
read the spare area of new flash chips to locate the initial
bad blocks. The next step is to test all the pages in the bad
blocks and determine which are the bad pages. Then we use
SHA-256 to hash the entire bad-page location information
and sign it with the manufacture private key, storing the
signature in the One-Time Program (OTP) area, which is 10
pages large and is left for users to program as they desire.
Once it is programmed, the content can be hardly modified
without physical tampering. Therefore, OTP uniquely verifies
the physical property of the chip, thus proving the authenticity
of the component. Meanwhile, we notice the fact that even
though the block level damage is clonable on other NAND
flash chip by large amounts of P/E operations, attackers cannot
regenerate the same variables at the page level. Both bad page
number and location are not controllable on another chip. In
the worst case that no bad block is detected for a new flash
chip, the owner can still create a few unique bad pages by
themselves easily. Since the FTL avoids operating bad blocks,
there will not be any false negative. The false-positive rate can
be calculated as:

1 1
Pfalse positive = maX{Pﬁ; 21728} ©)
i=1 k;

Here K; is the bad page amount in the i¢n bad block and t is
the total number of bad blocks. Thus, the false positive rate
depends on the larger possibility between a successful bad
page clone and a collision of SHA-256 in OTP.

C. Image Provenance

Another important application of the unforgeable property
of Bit?2RNG is image provenance with the goal of proving the
authenticity of an image or video. With the recent advance-
ments in artificial intelligence, automatically constructing a
realistic fake image or video of a subject is a capability that is
ubiquitous to different users with various level of computing
literacy. One way to defend this is to provide unforgeable
binding that ties media to the device it was taken, which is
the SD card of the recording device in this case. Note that

